#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
#include <deque>
#include <map>
#include <unordered_map>
#include <set>
#include <unordered_set>
using namespace std;
#define INF 1234567890
int dn(int i) {
int res = i;
while (i > 0) {
res += i % 10;
i /= 10;
}
return res;
}
bool dx[100001];
int main() {
ios::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
for (int i = 1; i <= 10000; i++) {
dx[dn(i)] = true;
if (!dx[i]) cout << i << "\n";
}
return 0;
}
셀프 넘버
시간 제한 | 메모리 제한 | 제출 | 정답 | 맞은 사람 | 정답 비율 |
---|---|---|---|---|---|
1 초 | 256 MB | 26955 | 14111 | 11362 | 53.348% |
문제
셀프 넘버는 1949년 인도 수학자 D.R. Kaprekar가 이름 붙였다. 양의 정수 n에 대해서 d(n)을 n과 n의 각 자리수를 더하는 함수라고 정의하자. 예를 들어, d(75) = 75+7+5 = 87이다.
양의 정수 n이 주어졌을 때, 이 수를 시작해서 n, d(n), d(d(n)), d(d(d(n))), …과 같은 무한 수열을 만들 수 있다.
예를 들어, 33으로 시작한다면 다음 수는 33 + 3 + 3 = 39이고, 그 다음 수는 39 + 3 + 9 = 51, 다음 수는 51 + 5 + 1 = 57이다. 이런식으로 다음과 같은 수열을 만들 수 있다.
33, 39, 51, 57, 69, 84, 96, 111, 114, 120, 123, 129, 141, …
n을 d(n)의 생성자라고 한다. 위의 수열에서 33은 39의 생성자이고, 39는 51의 생성자, 51은 57의 생성자이다. 생성자가 한 개보다 많은 경우도 있다. 예를 들어, 101은 생성자가 2개(91과 100) 있다.
생성자가 없는 숫자를 셀프 넘버라고 한다. 100보다 작은 셀프 넘버는 총 13개가 있다. 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, 97
10000보다 작거나 같은 셀프 넘버를 한 줄에 하나씩 출력하는 프로그램을 작성하시오.
입력
입력은 없다.
출력
10,000보다 작거나 같은 셀프 넘버를 한 줄에 하나씩 증가하는 순서로 출력한다.
예제 입력 1
예제 출력 1
1
3
5
7
9
20
31
42
53
64
|
| <-- a lot more numbers
|
9903
9914
9925
9927
9938
9949
9960
9971
9982
9993
출처
ACM-ICPC > Regionals > North America > Mid-Central Regional > 1998 Mid-Central Regional Programming Contest D번