Motivation and Basics

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

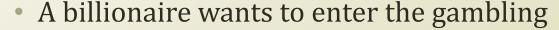
Weekly Objectives

- Motivate the study on
 - Machine learning, AI, Datamining....
 - Why? What?
 - Overview of the field
- Short questions and answers on a story
 - What consists of machine learning?
 - MLE
 - MAP
- Some basics
 - Probability
 - Distribution
 - And some rules...

WARMING UP A SHORT EPISODE

Thumbtack Question

- There is a gambling site with a game of flipping a thumbtack
 - Nail is up, and you betted on nail's up you get your money in double
 - Same to the nail's down

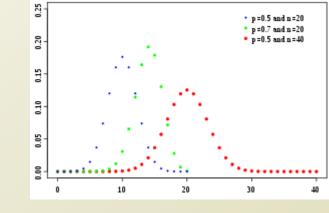


- With scientific and engineering supports
 - He is paying you a big chunk of money
- He asks you
 - I have a thumbtack, if I flip it, what's the probability that it will fall with the nail's up?
- Your response?

Experience from trials

- My response is
 - Please flip it a few times
- Billionaire tried for five times
 - The nail's up case is three out of five trials
- My response is
 - You should invest
 - 3/5 to nail's up case
 - 2/5 to nail's down case
- The billionaire asks why?
- Then,
 - You answer.....

Binomial Distribution



- Binomial distribution is
 - The discrete probability distribution
 - Of the number of successes in a sequence of n independent yes/no experiments, and each success has the probability of θ
 - Also called a Bernoulli experiment
- Flips are i.i.d
 - Independent events
 - Identically distributed according to binomial distribution
- $P(H) = \theta, P(T) = 1 \theta$
- $P(HHTHT) = \theta\theta (1-\theta) \theta (1-\theta) = \theta^3 (1-\theta)^2$
- Let's say
 - D as Data = H,H,T,H,T
 - n=5
 - $k=a_H=3$
 - $p = \theta$

$$f(k; n, p) = P(K = k) = {n \choose k} p^k (1 - p)^{n-k}$$

 \boldsymbol{n} and \boldsymbol{p} are given as

parameters, and the value

is calculated by varying k

 $P(D|\theta) = \theta^{a_H} (1-\theta)^{a_T}$

Makes order insensitive

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

Maximum Likelihood Estimation

- $P(D|\theta) = \theta^{a_H} (1-\theta)^{a_T}$
- Data: We have observed the sequence data of D with a_H and a_T
- Our hypothesis
 - The gambling result of thumbtack follows the binomial distribution of θ
- How to make our hypothesis strong?
 - Finding out a better distribution of the observation
 - Can be done, but you need more rational.
 - Finding out the best candidate of $\boldsymbol{\theta}$
 - What's the condition to make θ most plausible?
- One candidate is the **Maximum Likelihood Estimation (MLE) of** θ
 - Choose θ that maximizes the probability of observed data

$$\widehat{\boldsymbol{\theta}} = argmax_{\boldsymbol{\theta}} P(\boldsymbol{D}|\boldsymbol{\theta})$$

MLE Calculation

•
$$\hat{\theta} = argmax_{\theta}P(D|\theta) = argmax_{\theta}\theta^{a_H}(1-\theta)^{a_T}$$

- This is going nowhere, so you use a trick
 - Using the log function

•
$$\hat{\theta} = argmax_{\theta} lnP(D|\theta) = argmax_{\theta} ln\{\theta^{a_H}(1-\theta)^{a_T}\}\$$

= $argmax_{\theta}\{a_H ln\theta + a_T ln(1-\theta)\}\$

 Then, this is a maximization problem, so you use a derivative that is set to zero

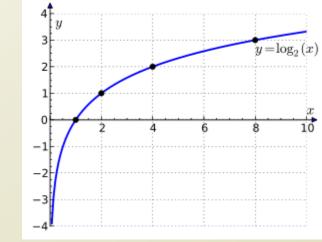
•
$$\frac{d}{d\theta}(a_H \ln\theta + a_T \ln(1-\theta)) = 0$$

•
$$\frac{a_H}{\theta} - \frac{a_T}{1-\theta} = 0$$

•
$$\theta = \frac{a_H}{a_T + a_H}$$

• When θ is $\frac{a_H}{a_T + a_H}$, the θ becomes the best candidate from the MLE perspective

•
$$\hat{\theta} = \frac{a_H}{a_H + a_T}$$



Number of Trials

$$\widehat{\theta} = \frac{a_H}{a_H + a_T}$$

- You report your proof to the billionaire
 - From the observations of your trials, and from the MLE perspective, and by assuming the binomial distribution assumption.....
 - **\theta** is 0.6
 - So, you are more likely to win a bet if you choose the head
- He says okay.
 - Billionaire
 - While you were calculating, I was flipping more times.
 - It turns out that we have 30 heads and 20 tails.
 - Does this change anything?
 - Your response
 - No, nothing's changed. Same. 0.6
 - Billionaire
 - Then, I was just spending time for nothing????
- You say no
 - Your additional trials are valuable to

Simple Error Bound

- Your response
 - Your additional trials reduce the error of our estimation
 - Right now, we have $\hat{\theta} = \frac{a_H}{a_H + a_T}$, $N = a_H + a_T$
 - Let's say θ^* is the true parameter of the thumbtack flipping for any error, $\epsilon>0$
 - We have a simple upper bound on the probability provided by Hoeffding's inequality
 - $P(|\hat{\theta} \theta^*| \ge \varepsilon) \le 2e^{-2N\varepsilon^2}$

Coming from a friend in the math. dept.

- Billionaire asks you
 - Can you calculate the required number of trials, N?
 - To obtain $\varepsilon = 0.1$ with 0.01% case
- Now, your professor jumps in and says
 - This is Probably Approximate Correct (PAC) learning
 - Probably? (0.01% case)
 - Approximately? ($\varepsilon = 0.1$)