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Weekly Objectives

• Learn the logistic regression classifier
• Understand why the logistic regression is better suited than the linear 

regression for classification tasks

• Understand the logistic function

• Understand the logistic regression classifier

• Understand the approximation approach for the open form solutions

• Learn the gradient descent algorithm
• Know the tailor expansion

• Understand the gradient descent/ascent algorithm

• Learn the different between the naïve Bayes and the logistic 
regression
• Understand the similarity of the two classifiers

• Understand the differences of the two classifiers

• Understand the performance differences
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LOGISTIC REGRESSION
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Optimal Classification and Bayes Risk

• Linear function vs. Non-linear function of P(Y|X)
• Which is better?

• Problems of linear function
• Range
• Risk optimization

• Which function to use?
• Need S-curve!
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Detour: Credit 

Approval Dataset
• http://archive.ics.uci.edu/ml/datasets/Cr

edit+Approval
• To protect the confidential information, 

the dataset is anonymized
• Feature names and values, as well

• A1: b, a.
A2: continuous.
A3: continuous.
A4: u, y, l, t.
A5: g, p, gg.
A6: c, d, cc, i, j, k, m, r, q, w, x, e, aa, ff.
A7: v, h, bb, j, n, z, dd, ff, o.
A8: continuous.
A9: t, f.
A10: t, f.
A11: continuous.
A12: t, f.
A13: g, p, s.
A14: continuous.
A15: continuous.
C: +,- (class attribute)
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Some Counting Result
• 690 instances total
• 307 positive instances
• Considering A1

• 98 positive when a
• 112 negative when a
• 206 positive when b
• 262 negative when b
• 3 positive when ?
• 9 negative when ?

• Considering A9
• 284 positive when t
• 77 negative when t
• 23 positive when f
• 306 negative when f

A9 (307+,383-)

284+,77- 23+,306-

t f

A1 (307+,383-)

98+,112-
206+,
262-

a b

3+,9-

?

Which is a better attribute to include in 
the feature set of the hypothesis?

http://archive.ics.uci.edu/ml/datasets/Credit+Approval
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Classification with One Variable
• Let’s predict the class, C, with an attribute, A15

• Imagine that the Y axis shows P(Y|X)

• There is a decision boundary
• You can see it intuitively

• Then, How to find the boundary?
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Linear Function vs. Non-Linear Function
• Problem of fitting to the linear function

• Violate the probability axiom
• Slow response to the examples

• Better to fit to the logistic function
• Keep the probability axiom
• Quick response around the decision boundary

• Which function to use? 
• Logistic function – a special case of sigmoid function
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Logistic function

• Sigmoid function is

• Bounded

• Differentiable

• Real function

• Defined for all real inputs

• With positive derivative

• Logistic function is

• 𝑓 𝑥 =
1

1+𝑒−𝑥

• In relation to the
population growth

• Why is this good?

• Sigmoid function

• Particularly, easy to calculate the derivative…
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Many types of 
sigmoid functions
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Logistic Function Fitting

• When we are fitting the linear 
regression to approximate P(Y|X)

• 𝑋𝜃 = 𝑃(𝑌|𝑋)
• Though, this is not going to keep the 

probability axiom

• Now we are fitting to the logistic 
function to approximate P(Y|X)

• 𝑋𝜃 = log
𝑃(𝑌|𝑋)

1−𝑃(𝑌|𝑋)

• From linear to logistic
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Linear shift for a better 
function fitting

LogitLogistic
Inverse of X and Y

X in Logit is the probability

Very similar to the linear 
regression.

Turning to the multivariate 
case

መ𝑓 = 𝑋𝜃 𝜃 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌

Linear Regression:
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Logistic Regression

• Logistic regression is a probabilistic classifier
to predict the binomial or the multinomial
outcome 

• by fitting the conditional probability
to the logistic function.

• You can see the problem from the different view. 

• This way is actually closer to the formal definition.

• Given the Bernoulli experiment

• 𝑃 𝑦 𝑥 = 𝜇 𝑥 𝑦(1 − 𝜇 𝑥 )1−𝑦

• 𝜇 𝑥 =
1

1+𝑒−
ሶ𝜃𝑇𝑥

= 𝑃(𝑦 = 1|𝑥)

• Here, 𝜇 𝑥 is the logistic function

• From the previous slide,

• 𝑋𝜃 = log
𝑃(𝑌|𝑋)

1−𝑃(𝑌|𝑋)
→ 𝑃 𝑌 𝑋 =

𝑒𝑋𝜃

1+𝑒𝑋𝜃
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The goal, finally, becomes 
finding out θ, again

Y=0 Y=1
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Finding the Parameter, θ

• Maximum Likelihood Estimation (MLE) of θ
• Choose θ that maximizes the probability of observed data

෡𝜽 = 𝒂𝒓𝒈𝒎𝒂𝒙𝜽𝑷(𝑫|𝜽)

• This is Maximum Conditional Likelihood Estimation (MCLE)

• መ𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑃 𝐷 𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃ς1≤𝑖≤𝑁𝑃 𝑌𝑖 𝑋𝑖; 𝜃

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑙𝑜𝑔( ෑ

1≤𝑖≤𝑁

𝑃 𝑌𝑖 𝑋𝑖; 𝜃 ) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 ෍

1≤𝑖≤𝑁

𝑙𝑜𝑔( 𝑃 𝑌𝑖 𝑋𝑖; 𝜃 )

• 𝑃 𝑌𝑖 𝑋𝑖; 𝜃 = 𝜇 𝑋𝑖
𝑌𝑖(1 − 𝜇 𝑋𝑖 )

1−𝑌𝑖

• 𝑙𝑜𝑔 𝑃 𝑌𝑖 𝑋𝑖; 𝜃 = 𝑌𝑖 log 𝜇 𝑋𝑖 + 1 − 𝑌𝑖 log 1 − 𝜇 𝑋𝑖
= 𝑌𝑖 log 𝜇 𝑋𝑖 − log 1 − 𝜇 𝑋𝑖 + log 1 − 𝜇 𝑋𝑖

= 𝑌𝑖 log
𝜇 𝑋𝑖

1 − 𝜇 𝑋𝑖
+ log 1 − 𝜇 𝑋𝑖

= 𝑌𝑖𝑋𝑖𝜃 + log 1 − 𝜇 𝑋𝑖 = 𝑌𝑖𝑋𝑖𝜃 − log 1 + 𝑒𝑋𝑖𝜃
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𝑃 𝑦 = 1 𝑥 = 𝜇 𝑥 =
1

1 + 𝑒− ሶ𝜃𝑇𝑥
=

𝑒𝑋𝜃

1 + 𝑒𝑋𝜃

𝑋𝜃 = log
𝑃(𝑌|𝑋)

1 − 𝑃(𝑌|𝑋)
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Finding the Parameter, θ, contd.

• መ𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 σ1≤𝑖≤𝑁 𝑙𝑜𝑔( 𝑃 𝑌𝑖 𝑋𝑖; 𝜃 )

• = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 σ1≤𝑖≤𝑁{𝑌𝑖𝑋𝑖𝜃 − log 1 + 𝑒𝑋𝑖𝜃 }

• Partial derivative to find a certain element in 𝜃

•
𝜕

𝜕𝜃𝑗
σ1≤𝑖≤𝑁 𝑌𝑖𝑋𝑖𝜃 − log 1 + 𝑒𝑋𝑖𝜃

= ෍

1≤𝑖≤𝑁

𝑌𝑖𝑋𝑖,𝑗 + ෍

1≤𝑖≤𝑁

−
1

1 + 𝑒𝑋𝑖𝜃
× 𝑒𝑋𝑖𝜃 × 𝑋𝑖,𝑗

= ෍

1≤𝑖≤𝑁

𝑋𝑖,𝑗(𝑌𝑖 −
𝑒𝑋𝑖𝜃

1 + 𝑒𝑋𝑖𝜃
) = ෍

1≤𝑖≤𝑁

𝑋𝑖,𝑗(𝑌𝑖 − 𝑃 𝑌𝑖 = 1 𝑋𝑖; 𝜃 ) = 0

• There is no way to derive further

• There is no closed form solution!

• Open form solution  approximate!
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𝑃 𝑦 = 1 𝑥 =
𝑒𝑋𝜃

1 + 𝑒𝑋𝜃

Cannot be easily solved in 
the closed form because of 

the logistic function

መ𝑓 = 𝑋𝜃 𝛻𝜃(𝜃
𝑇𝑋𝑇𝑋𝜃 − 2𝜃𝑇𝑋𝑇𝑌)=0

2𝑋𝑇𝑋𝜃 − 2𝑋𝑇𝑌 = 0
𝜃 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌

Linear Regression (Closed Form):


