Logistic Regression

[I-Chul Moon
Dept. of Industrial and Systems Engineering
KAIST

icmoon@Xkaist.ac.kr

KAIST Copyright © 2010 by II-Chul Moon, Dept. of Industrial and Systems Engineering, KAIST


mailto:icmoon@kaist.ac.kr

Weekly Objectives

Learn the logistic regression classifier

Understand why the logistic regression is better suited than the linear
regression for classification tasks

Understand the logistic function

Understand the logistic regression classifier

Understand the approximation approach for the open form solutions
Learn the gradient descent algorithm

Know the tailor expansion

Understand the gradient descent/ascent algorithm

Learn the different between the naive Bayes and the logistic
regression

Understand the similarity of the two classifiers
Understand the differences of the two classifiers

Understand the performance differences
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LOGISTIC REGRESSION
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Optimal Classification and Bayes Risk

. [ P(Y=y|X) P(Y=y|X)
Bayes Risk
R(f")
0 X

< Classify asy Classify asy
* Linear function vs. Non-linear function of P(Y|X)
Which is better?
* Problems of linear function

Range
Risk optimization

* Which function to use?
Need S-curve!

0.4

S-curve sl
a.k.a. Sigmoid oz
function o

0
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. - Some Counting Result
Detou r . C red It 690 instances total

307 positive instances

Approval Dataset L

* 98 positive when a

http://archive.ics.uci.edu/ml/datasets/Cr * 112 negative when a
edit+Approval 206 positive when b
To protect the confidential information, 262 negative when b
the dataset is anonymized o
3 positive when ?
« Feature names and values, as well _
Al:b a 9 negative when ?
A2: continuous. Considering A9
A3: continuous. 284 positive when t
Ad:u,y, ]t :
, 77 negative when t
A5: g D, g8 -
A6: ¢, d, cc i, j, k m,r1,qwX, e, aa, ff. 23 positive when f
A7:v,h,bb,j,n,zdd,ff, 0. 306 negative when f
A8: continuous.
A9: t, f.
A10: t, f. A1l 307+383-) A9 (307+,383)
A11: continuous.
Al12:t, £
Al13:g,p,s.

284+,77- 23+,306-

A14: continuous.
A15: continuous.
C: +,- (class attribute)

Which is a better attribute to include in
the feature set of the hypothesis?
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Classification with One Variable

 Let’s predict the class, C, with an attribute, A15
Imagine that the Y axis shows P(Y|X)

There is a decision boundary
You can see it intuitively

* Then, How to find the boundary?
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X=A15, Y=C : X=log(A15), Y=C
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|_inear Function vs. Non-Linear Function

* Problem of fitting to the linear function
Violate the probability axiom
Slow response to the examples
 Better to fit to the logistic function
Keep the probability axiom

Quick response around the decision boundary Blue = (XY, 4e)
- Which function to use? Red = (X,Py, (Y[X))
Logistic function - a special case of sigmoid function Green=(X,P,,,(Y|X))

function
2 2
1.5 1.5+~
)
1 . - 1
05 05F
O r r r r r 0 ®
0 2 4 6 8 10 12 -10
X=A15, Y=P(Y|X) x 10°
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Logistic function sigmotd functions

I /(@) .
- Sigmoid function is —_f:{)j N - /
Bounded 24d(32)
Differentiable >
Real function
Defined for all real inputs > -1
With positive derivative # 5
* Logistic function is ol i
f@) == gl |
In relation to the ol il
population growth il 1 ]
Why is this good? a5 & i o i 5 5 & 5 0 o1 o7 o5 o1 o5 o5 o7 as as
Sigmoid function Logistic Function Logit Functi)(:n
Particularly, easy to calculate the derivative... f(x) = log(l _ x)
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Logistic Function Fitting
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Linear Regression:

/_ f=x0 60=X"X)"XxTy

Very similar to the linear
regression.
Turning to the multivariate

X
x) =1lo (—
fGo) =log(T—

Logit-> Logistic

Inverse of X and Y
X in Logit is the probabili

Linear shift for a better
function fitting

* When we are fitting the linear - Now we are fitting to the logistic
regression to approximate P(Y|X) function to approximate P(Y|X)
- X6 = P(Y|X) . xg = 1og( P(Y|X) )

* Though, this is not going to keep the

probability axiom

1-P(Y|X)
* From linear to logistic
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Logistic Regression

 Logistic regression is a probabilistic classifier al /_
to predict the binomial or the multinomial ;
outcome

by fitting the conditional probability
to the logistic function.

* You can see the problem from the different view.
This way is actually closer to the formal definition.

* Given the Bernoulli experiment Logistic Function

P(ylx) = p(x)¥ (1 — u(x)'=> 1
1 (x) = -
u(x) = o 0Tx P(y = 1|x) f 1+e™™
Here, u(x) is the logistic function
* From the previous slide, The goal, finally, becomes
finding out 6, again
_ P(Y|X) _ eX0
X6 = log (1—P(Y|X)) - P(YIX) = 1+eX6
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1 eXH

O =10 =4 = =T

Finding the Parameter, @ 0 = tog (240 )

1— P(Y|X)

Maximum Likelihood Estimation (MLE) of

Choose 8 that maximizes the probability of observed data
0 = argmaxgyP(D|0)

This is Maximum Conditional Likelihood Estimation (MCLE)
0 = argmaxeP(D|0) = argmaxg [1,<;<y P(Y;|X;; 6)
= argmaxglog( l_[ P(Y;|X;;0)) = argmaxg Z log(P(Y;|X;;60))

1<i<N 1<i<N

P(Y;1X;0) = p(X)"i(1 — p(X;))t e
log(P(Y;1X;;0)) = Yilog(u(X)) + (1 — Y log(1 — u(X)))
= Yi{log(u(X;)) — log(1 — n(Xy))} + log(1 — u(Xy))

=Y log( a5 ) +log(1 — u(Xy))

1—u(X;)
= YX;0 +log(1 — u(X,)) = Y;X;6 —log(1 + X:%)
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Finding the Parameter, 6, contd.

0 = argmaxg Yy<i<y log(P(Y;|X;; 6))
© = argmaxe X< an{YiX;0 — log(1 + e¥i¥)}

» Partial derivative to find a certain element in 6

X6
0 7 ) )
. 571{215"5"’ YiX;6 — log(1 + e*i%)} P(y =1lx) =1 + eX0
1
- —__x eXif .
_[ z YiXi,j}‘F{ z ~ s oxE <€ xXl,]}
1<i1<N 1<i1<N )
eXiQ
- Z Xi; (Y _m) @(Yi —P(Y; =1|X;60)) =0
1<i<N 1<i<N
* There is no way to derive further

* There is no closed form solution! Cannot be easily solved in
the closed form because of

* Open form solution = approximate! — :
the logistic function
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