Logistic Regression

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- Learn the logistic regression classifier
 - Understand why the logistic regression is better suited than the linear regression for classification tasks
 - Understand the logistic function
 - Understand the logistic regression classifier
 - Understand the approximation approach for the open form solutions
- Learn the gradient descent algorithm
 - Know the tailor expansion
 - Understand the gradient descent/ascent algorithm
- Learn the different between the naïve Bayes and the logistic regression
 - Understand the similarity of the two classifiers
 - Understand the differences of the two classifiers
 - Understand the performance differences

LOGISTIC REGRESSION

Optimal Classification and Bayes Risk

- Linear function vs. Non-linear function of P(Y|X)
 - Which is better?
- Problems of linear function
 - Range
 - Risk optimization
- Which function to use?
 - Need S-curve!

Detour: Credit Approval Dataset

- http://archive.ics.uci.edu/ml/datasets/Cr edit+Approval
- To protect the confidential information, the dataset is anonymized
 - Feature names and values, as well
- A1: b, a.
 - A2: continuous.
 - A3: continuous.
 - A4: u, y, l, t.
 - A5: g, p, gg.
 - A6: c, d, cc, i, j, k, m, r, q, w, x, e, aa, ff.
 - A7: v, h, bb, j, n, z, dd, ff, o.
 - A8: continuous.
 - A9: t, f.
 - A10: t, f.
 - A11: continuous.
 - A12: t, f.
 - A13: g, p, s.
 - A14: continuous.
 - A15: continuous.
 - C: +,- (class attribute)

Some Counting Result

- 690 instances total
- 307 positive instances
- Considering A1
 - 98 positive when a
 - 112 negative when a
 - 206 positive when b
 - 262 negative when b
 - 3 positive when?
 - 9 negative when?
- Considering A9
 - 284 positive when t
 - 77 negative when t
 - 23 positive when f
 - 306 negative when f

Which is a better attribute to include in the feature set of the hypothesis?

Classification with One Variable

- Let's predict the class, C, with an attribute, A15
 - Imagine that the Y axis shows P(Y|X)
 - There is a decision boundary
 - You can see it intuitively
- Then, How to find the boundary?

Linear Function vs. Non-Linear Function

- Problem of fitting to the linear function
 - Violate the probability axiom
 - Slow response to the examples
- Better to fit to the logistic function
 - Keep the probability axiom
 - Quick response around the decision boundary
- Which function to use?
 - Logistic function a special case of sigmoid function

Blue = (X,Y_{true}) Red = $(X,P_{lin}(Y|X))$ Green= $(X,P_{log}(Y|X))$

Logistic function

Many types of sigmoid functions

- Sigmoid function is
 - Bounded
 - Differentiable
 - Real function
 - Defined for all real inputs
 - With positive derivative
- Logistic function is

$$f(x) = \frac{1}{1 + e^{-x}}$$

- In relation to the population growth
- Why is this good?
 - Sigmoid function
 - Particularly, easy to calculate the derivative...

 $f(x) = \log(\frac{x}{1 - x})$

Logistic Function Fitting

Linear Regression:

$$\hat{f} = X\theta \quad \theta = (X^T X)^{-1} X^T Y$$

Very similar to the linear regression.

Turning to the multivariate case

$$f(x) = \log\left(\frac{x}{1-x}\right) \to x = \log\left(\frac{p}{1-p}\right) \to ax + b = \log\left(\frac{p}{1-p}\right) \to X\theta = \log\left(\frac{p}{1-p}\right)$$

Logit→Logistic
Inverse of X and Y
X in Logit is the probability

Linear shift for a better function fitting

- When we are fitting the linear regression to approximate P(Y|X)
 - $X\theta = P(Y|X)$
 - Though, this is not going to keep the probability axiom
- Now we are fitting to the logistic function to approximate P(Y|X)
 - $X\theta = \log\left(\frac{P(Y|X)}{1 P(Y|X)}\right)$
 - From linear to logistic

Logistic Regression

- Logistic regression is a probabilistic classifier to predict the binomial or the multinomial outcome
 - by fitting the conditional probability to the logistic function.

- This way is actually closer to the formal definition.
- Given the Bernoulli experiment

•
$$P(y|x) = \mu(x)^y (1 - \mu(x))^{1-y}$$

•
$$\mu(x) = \frac{1}{1 + e^{-\dot{\theta}^T x}} = P(y = 1 | x)$$

- Here, $\mu(x)$ is the logistic function
- From the previous slide,

•
$$X\theta = \log\left(\frac{P(Y|X)}{1 - P(Y|X)}\right) \to P(Y|X) = \frac{e^{X\theta}}{1 + e^{X\theta}}$$

Logistic Function

$$f(x) = \frac{1}{1 + e^{-x}}$$

The goal, finally, becomes finding out θ , again

$$P(y = 1|x) = \mu(x) = \frac{1}{1 + e^{-\dot{\theta}^T x}} = \frac{e^{X\theta}}{1 + e^{X\theta}}$$

Finding the Parameter, θ

$$X\theta = \log\left(\frac{P(Y|X)}{1 - P(Y|X)}\right)$$

- Maximum Likelihood Estimation (MLE) of θ
 - Choose θ that maximizes the probability of observed data $\widehat{\theta} = argmax_{\theta}P(D|\theta)$
- This is Maximum Conditional Likelihood Estimation (MCLE)

•
$$\hat{\theta} = argmax_{\theta}P(D|\theta) = argmax_{\theta} \prod_{1 \le i \le N} P(Y_i|X_i;\theta)$$

= $argmax_{\theta}log(\prod_{1 \le i \le N} P(Y_i|X_i;\theta)) = argmax_{\theta} \sum_{1 \le i \le N} log(P(Y_i|X_i;\theta))$

•
$$P(Y_i|X_i;\theta) = \mu(X_i)^{Y_i}(1-\mu(X_i))^{1-Y_i}$$

•
$$log(P(Y_i|X_i;\theta)) = Y_i log(\mu(X_i)) + (1 - Y_i) log(1 - \mu(X_i))$$

 $= Y_i \{ log(\mu(X_i)) - log(1 - \mu(X_i)) \} + log(1 - \mu(X_i))$
 $= Y_i log(\frac{\mu(X_i)}{1 - \mu(X_i)}) + log(1 - \mu(X_i))$
 $= Y_i X_i \theta + log(1 - \mu(X_i)) = Y_i X_i \theta - log(1 + e^{X_i \theta})$

Finding the Parameter, θ , contd.

- $\hat{\theta} = argmax_{\theta} \sum_{1 \le i \le N} log(P(Y_i|X_i;\theta))$
- = $argmax_{\theta} \sum_{1 \le i \le N} \{Y_i X_i \theta \log(1 + e^{X_i \theta})\}$
- Partial derivative to find a certain element in θ

$$\hat{f} = X\theta \quad \nabla_{\theta}(\theta^T X^T X \theta - 2\theta^T X^T Y) = 0$$

$$\hat{f} = X\theta \quad \nabla_{\theta}(\theta^{T}X^{T}X\theta - 2\theta^{T}X^{T}Y) = 0$$

$$2X^{T}X\theta - 2X^{T}Y = 0$$

$$\theta = (X^{T}X)^{-1}X^{T}Y$$

Linear Regression (Closed Form):

•
$$\frac{\partial}{\partial \theta_{j}} \left\{ \sum_{1 \leq i \leq N} Y_{i} X_{i} \theta - \log \left(1 + e^{X_{i} \theta} \right) \right\}$$

$$= \left\{ \sum_{1 \leq i \leq N} Y_{i} X_{i,j} \right\} + \left\{ \sum_{1 \leq i \leq N} -\frac{1}{1 + e^{X_{i} \theta}} \times e^{X_{i} \theta} \times X_{i,j} \right\}$$

$$= \sum_{1 \leq i \leq N} X_{i,j} \left(Y_{i} - \frac{e^{X_{i} \theta}}{1 + e^{X_{i} \theta}} \right) = \sum_{1 \leq i \leq N} X_{i,j} \left(Y_{i} - P(Y_{i} = 1 | X_{i}; \theta) \right) = 0$$

- There is no way to derive further
 - There is no closed form solution!
 - Open form solution → approximate!

Cannot be easily solved in the closed form because of the logistic function