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Weekly Objectives

Learn the logistic regression classifier

Understand why the logistic regression is better suited than the linear
regression for classification tasks

Understand the logistic function

Understand the logistic regression classifier

Understand the approximation approach for the open form solutions
Learn the gradient descent algorithm

Know the tailor expansion

Understand the gradient descent/ascent algorithm

Learn the different between the naive Bayes and the logistic
regression

Understand the similarity of the two classifiers
Understand the differences of the two classifiers

Understand the performance differences
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GRADIENT METHOD
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Taylor Expansion

Taylor series is a representation of a
function

as a infinite sum of terms calculated
from the values of the function’s
derivatives at a fixed point.
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Gradient Descent/Ascent

* Gradient descent/ascent method is
* Given a differentiable function of f{x) and an initial parameter of x,
 Iteratively moving the parameter to the lower/higher value of 7(x)
+ By taking the direction of the negative/positive gradient of f(x)

* Why this works?

S = +%(x — &)+ 0(|lx - allz) Useful Big-Oh Notation

¢ Assume a=x;and x=x,+/m, u is the unit direction vector for the partial deriv.

f(xq + hu) = f(x;) + hf'(x)u + h*0(1)
fOq + hu) — f(xq) = hf'(x))u M
©u' = argming{f (v, + hu) — ()} = argminghf’ (e )u = — L

2 f(xy + hu) < f(x,),d - b = |@||b|cosa
_ h f’(xl)
R |f' (x|
* Perfectly applicable to 8 = argmaxg Y.;<j<y log( P(Y;|X;; 6))

© f(0) = Xi<ien log (P(Yi1X;; 0)) :
* Setup an initial parameter of 6, Gradient Ascent

* Iteratively moving 6; to the higher value of f(6;)

Gradient Descent
C xt+1 — xt + hll* = xt

By taking the direction of the positive gradient of f(6;)
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How Gradient Descent Works

Example function: Rosenbrock function
f(x,%2) = (1 —x1)*+100(x; — x{)?

0
o f (1 22) = —2(1 = x;) — 400x, (% — x7)

T (1, %) = 2000, — )
Assume the initial point
= (x,x2) = (—1.3,0.9)
Partial derivative vector at the point

f’(xo) = f(xl:xz) f(xler) — (_41541 _158)

Update the point with the negative partial derivative in a small scale,

h=0.001

1 f'(x%)
ATS] I x|

- (—1.3 —0.001 x —415.4/444.4335,)
X =\ 09-0001x—-158/444.4335

= (—1.2991,0.9004)
Repeat the update until converges

3 T T T 300 3rE

X

KAIST Copyright © 2010 by II-Chul Moon, Dept. of Industrial and Systems Engineering, KAIST

-300

250

200

150

100

50



X6
P(y = 1[x) =

Finding € with Gradient Ascent

14 X

6 = argmaxg Y1iey log(P(Y;1X;; 6))

f(0) = Z1<i<N log(P(Y;1X;;0))

orf(o
L2 = 5 acian Log (PN 00)} = Tacian Xij (= POy = 11x;6)

To utilize the gradient method
We need to know f’(x) which are above

£ (xe)
h|f( t)
Then, how to iteratively update the parameter, 8

Case of ascent: x;,1 < x; + hu™ = x; +

af(e
9t+1 — Ht + h j;ggt) = Ht + h{21siSNXij(Y' —P(Y =11X;; Ht))}

exet

t

= 0f +— {2 B 1
1<i<N

0]-0 can be arbitrarily chosen.
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Logistic Regression Matlab Exercise

* Let's do some coding...
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Linear Regression Revisited

Previously,
0 = argming(f — f)?= argming (Y — X6)?
= argming (Y — X0)T (Y — X0) = argming(Y — X0)" (Y — X0)
= argming(0TXTX0 — 20TXTY + YTY) = argming(0TXTX0 — 20T XTY)
Ve(6TXTX0 — 20TXTY)=0
2XTX0 —2XTy =0
6 =(XTX)"1xTy
Any problem???
Gradient descent can be a solution
0 = argming(f — f)?= argming (Y — X6)?=
argming leiSN(Yi - lejsd in‘gj)2

a_gkzlsiSN(Yl _ lejsd leej)2 - _leiSN Z(Yl - lejsd leej)Xllc

ar (ot ' ' ;

Oitt « 0L —h

00}
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