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Weekly Objectives

• Learn the logistic regression classifier
• Understand why the logistic regression is better suited than the linear 

regression for classification tasks

• Understand the logistic function

• Understand the logistic regression classifier

• Understand the approximation approach for the open form solutions

• Learn the gradient descent algorithm
• Know the tailor expansion

• Understand the gradient descent/ascent algorithm

• Learn the different between the naïve Bayes and the logistic 
regression
• Understand the similarity of the two classifiers

• Understand the differences of the two classifiers

• Understand the performance differences
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NAÏVE BAYES

VS. LOGISTIC REGRESSION
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Gaussian Naïve Bayes

• We want to compare the performance of the two classifiers
• Logistic regression handles the continuous features

• Why not naïve Bayes?

• Naïve Bayes Classifier Function

• 𝑓𝑁𝐵 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑌=𝑦𝑃 𝑌 = 𝑦 ς1≤𝑖≤𝑑 𝑃(𝑋𝑖 = 𝑥𝑖 𝑌 = 𝑦

• What-if the feature is a continuous random variable?
• We can assume that the variable follows the Gaussian distribution 

with the mean of 𝜇 and the variance of 𝜎2

• 𝑃(𝑋𝑖 𝑌, 𝜇, 𝜎
2 =

1

𝜎 2𝜋
𝑒
−
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2𝜎2

• In addition, let’s use more shortened terms

• 𝑃 𝑌 = 𝑦 = 𝜋1

• 𝑃 𝑌 ς1≤𝑖≤𝑑 𝑃(𝑋𝑖 𝑌 = 𝜋𝑘ς1≤𝑖≤𝑑
1

𝜎𝑘
𝑖C
exp(−

1

2

𝑋𝑖−𝜇𝑘
𝑖

𝜎𝑘
𝑖

2

)
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Derivation to Logistic Regression (1)

• Derivation from the naïve Bayes to the logistic regression

• 𝑃 𝑌 ς1≤𝑖≤𝑑 𝑃(𝑋𝑖 𝑌 = 𝜋𝑘ς1≤𝑖≤𝑑
1

𝜎𝑘
𝑖C
exp(−

1

2

𝑋𝑖−𝜇𝑘
𝑖

𝜎𝑘
𝑖

2

)

• With naïve Bayes assumption

• 𝑃 𝑌 = 𝑦|𝑋 =
𝑃 𝑋 𝑌 = 𝑦 𝑃(𝑌=𝑦)

𝑃(𝑋)
=

𝑃 𝑋 𝑌 = 𝑦 𝑃(𝑌=𝑦)

𝑃 𝑋 𝑌 = 𝑦 𝑃 𝑌=𝑦 +𝑃 𝑋 𝑌 = 𝑛 𝑃(𝑌=𝑛)

=
𝑃 𝑌 = 𝑦 ς1≤𝑖≤𝑑 𝑃(𝑋𝑖 𝑌 = 𝑦

𝑃 𝑌 = 𝑦 ς1≤𝑖≤𝑑 𝑃(𝑋𝑖 𝑌 = 𝑦 + 𝑃 𝑌 = 𝑛 ς1≤𝑖≤𝑑 𝑃(𝑋𝑖 𝑌 = 𝑛
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Derivation to Logistic Regression (2)

• With naïve Bayes assumption

• 𝑃 𝑌 = 𝑦|𝑋 =
𝑃 𝑋 𝑌 = 𝑦 𝑃(𝑌=𝑦)

𝑃(𝑋)
=

𝑃 𝑋 𝑌 = 𝑦 𝑃(𝑌=𝑦)

𝑃 𝑋 𝑌 = 𝑦 𝑃 𝑌=𝑦 +𝑃 𝑋 𝑌 = 𝑛 𝑃(𝑌=𝑛)

=
𝑃 𝑌 = 𝑦 ς1≤𝑖≤𝑑 𝑃(𝑋𝑖 𝑌 = 𝑦

𝑃 𝑌 = 𝑦 ς1≤𝑖≤𝑑 𝑃(𝑋𝑖 𝑌 = 𝑦 + 𝑃 𝑌 = 𝑛 ς1≤𝑖≤𝑑 𝑃(𝑋𝑖 𝑌 = 𝑛

• 𝑃 𝑌 = 𝑦|𝑋 =
𝜋1 ς1≤𝑖≤𝑑

1

𝜎1
𝑖 C
exp(−

1

2

𝑋𝑖−𝜇1
𝑖

𝜎1
𝑖

2

)

𝜋1 ς1≤𝑖≤𝑑
1

𝜎1
𝑖 C
exp(−

1

2
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𝑖

𝜎1
𝑖

2

)+𝜋2 ς1≤𝑖≤𝑑
1
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𝑖 C
exp(−

1

2

𝑋𝑖−𝜇2
𝑖
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)

=
1

1 +

𝜋2ς1≤𝑖≤𝑑
1

𝜎2
𝑖C
exp(−

1
2

𝑋𝑖 − 𝜇2
𝑖

𝜎2
𝑖

2

)

𝜋1ς1≤𝑖≤𝑑
1
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𝑖
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)
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Derivation to Logistic Regression (3)

• Assuming the same variable of the two classes, 𝜎2
𝑖=𝜎1

𝑖

• 𝑃 𝑌 = 𝑦|𝑋 =
1

1+

𝜋2 ς1≤𝑖≤𝑑
1

𝜎2
𝑖 C

exp(−
1
2

𝑋𝑖−𝜇2
𝑖

𝜎2
𝑖

2

)

𝜋1 ς1≤𝑖≤𝑑
1

𝜎1
𝑖 C

exp(−
1
2

𝑋𝑖−𝜇1
𝑖

𝜎1
𝑖

2

)

=
1

1+

𝜋2 ς1≤𝑖≤𝑑 exp(−
1
2

𝑋𝑖−𝜇2
𝑖

𝜎2
𝑖

2

)

𝜋1 ς1≤𝑖≤𝑑 exp(−
1
2

𝑋𝑖−𝜇1
𝑖

𝜎1
𝑖

2

)

=
1

1 +

𝜋2exp(−σ1≤𝑖≤𝑑{
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𝜋1exp(−σ1≤𝑖≤𝑑{
1
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𝑋𝑖 − 𝜇1
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𝜎1
𝑖

2

})

=
1

1 +

exp(−σ1≤𝑖≤𝑑
1
2
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+ 𝑙𝑜𝑔𝜋2)

exp(−σ1≤𝑖≤𝑑{
1
2
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2

} + 𝑙𝑜𝑔𝜋1)
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Derivation to Logistic Regression (4)

• Assuming the same variable of the two classes, 𝜎2
𝑖=𝜎1

𝑖

• 𝑃 𝑌 = 𝑦|𝑋 =
1

1+exp(− σ1≤𝑖≤𝑑
1

2

𝑋𝑖−𝜇2
𝑖

𝜎2
𝑖

2

+𝑙𝑜𝑔𝜋2+σ1≤𝑖≤𝑑
1

2

𝑋𝑖−𝜇1
𝑖

𝜎1
𝑖

2

−𝑙𝑜𝑔𝜋1)

• =
1

1+exp(−
1

2(𝜎1
𝑖 )2

σ1≤𝑖≤𝑑 𝑋𝑖−𝜇1
𝑖 2

− 𝑋𝑖−𝜇2
𝑖 2

+𝑙𝑜𝑔𝜋2−𝑙𝑜𝑔𝜋1)

• =
1

1+exp(−
1

2(𝜎1
𝑖 )2

σ1≤𝑖≤𝑑 2 𝜇2
𝑖−𝜇1

𝑖 𝑋𝑖+𝜇2
𝑖 2−𝜇2

𝑖 2 +𝑙𝑜𝑔𝜋2−𝑙𝑜𝑔𝜋1)
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Naïve Bayes vs. Logistic Regression

• Naïve Bayes classifier

• 𝑃 𝑌|𝑋 =
1

1+exp(−
1

2(𝜎1
𝑖 )2

σ1≤𝑖≤𝑑 2 𝜇2
𝑖−𝜇1

𝑖 𝑋𝑖+𝜇2
𝑖 2−𝜇2

𝑖 2 +𝑙𝑜𝑔𝜋2−𝑙𝑜𝑔𝜋1)

• Assumption to get this formula
• Naïve Bayes assumption, Same variance assumption between classes

• Gaussian distribution for P(X|Y)

• Bernoulli distribution for P(Y)

• # of parameters to estimate = 2*2*d+1=4d+1
• With the different variances between classes

• Logistic Regression

• 𝑃 𝑌|𝑋 =
1

1+𝑒−
ሶ𝜃𝑇𝑥

• Assumption to get this formula
• Fitting to the logistic function

• # of parameters to estimate = d+1

• Who is the winner?
• Really??? There is no winner… Why?
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Generative-Discriminative Pair

• Generative model, P(Y|X)=P(X,Y)/P(X)=P(X|Y)P(Y)/P(X)
• Full probabilistic model of all variables

• Estimate the parameters of P(X|Y), P(Y) from the data

• Characteristics: Bayesian, Prior, Modeling the joint probability

• Naïve Bayes Classifier

• Discriminative model, P(Y|X)
• Do not need to model the distribution of the observed variables

• Estimate the parameters of P(Y|X) from the data

• Characteristics: Modeling the conditional probability

• Logistic Regression

• Pros and Cons [Ng & Jordan, 2002]
• Logistic regression is less biased

• Probably approximately correct learning: Naïve Bayes learns faster
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