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Weekly Objectives

Learn the support vector machine classifier

Understand the maximum margin idea of the SVM

Understand the formulation of the optimization problem
Learn the soft-margin and penalization

Know how to add the penalization term

Understand the difference between the log-loss and the hinge-loss
Learn the kernel trick

Understand the primal problem and the dual problem of SVM

Know the types of kernels

Understand how to apply the kernel trick to SVM and logistic
regression
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KERNEL TRICK
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Enough of Studying SVM?

You can train the SVM when
you even have “error” cases

Use a soft-margin to handle
such errors

However, this does not
change the complexity of
the decision boundary

In the real world, there are
situations which require
complex decision boundary...
Option 1
Make decision boundary
more CompleX 1 2 3 4 5 6 7 8 9 10
Go to non-linear
Option 2
Admit there will be an “error”
Represent the error in our problem formulation.
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Any problem???
# of Params, Representation,
Computation....
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Rethinking the Formulation

SVM turns
Classification = Constrained quadratic programming
Constrained optimization

miny f (x) inf: infimum “Greatest Lower Bound”
s.t. g(x) <0,h(x) =0 inf{1,2,3} =1
Lagrange method
Lagrange Prime Function: L(x,a, ) = f(x) + ag(x) + fh(x)
Lagrange Multiplier: @ = 0, 5
Lagrange Dual Function: d(a, B) = infyexL(x, a, ) = min,.L(x, a, )

f(x):if x is feasible
oo: otherwise

maxysopL(x,a, B) = {

min, f (x) = min,maxysoL(x, a, f)

Take advantage of the formulation technique of the constrained
optimization
Primal and Dual Problems!
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Primal and Dual Problem

Primal Problem

Lagrange Dual Problem

min,. f (x) maxgso,pd(a, B)
s.t. g(x) <0,h(x) =0 s.t.a>0
min,maxqso g L(x, a, B) maxgso gMmin,L(x, a, B)

* Weak duality theorem
dla,B) < f(x*) for Va,Vp
d* = maxgsopmingL(x, a, f) < min,maxgsopgL(x, a,f) = p*
Maximizing the dual function provides the lower bound of f(x*)
Duality gap = f(x*) — d(a*, B¥)
* Strong duality

d* = maxysopmingL(x, a, f) = min,maxgsopL(x, a,f) = p*
When Karush-Kunh-Tucker (KKT) Conditions are satisfied
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KKT Condition and Strong Duality

* Strong duality
© d" = maxgsopmingL(x, a, f) = minymaxysopL(x,a, B) = p*

* Holds when KKT conditions are met
« VL(x*,a*,B*) =0

Primal Problem

Active Constraint min, f (x)
ca =20 a*:O:}g(x*):() S.t.g(X)SO,
cg(xH <0 Ilgac;cive Constraint h(x) =0
) L gx)<0=a" =0

h(x™) =0 - Complementary
catg(x*) =0 Slackness
Strong Duality m KKT Condition
d* — *

For convex optimization

Primal and dual problems are equivalent for
h : D
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Primal Problem

min, f(x)

Dual Problem of SVM s.t. g(x) < 0

h(x) =0

Lagrange Prime Function
Primal Problem of Linearly Separable SVM L(x,a,B) = f(x) + ag(x) + Bh(x)

minw,b”W”
s.t. (ij + b)yj >1,Vj

_ 1
min,, ,MaXg>0,8 EW ‘W — 2 aj[(wxj + b)yj — 1]

s.t.aj 20, for Vj ] Dual Problem of Linearly Separable SVM

1
maxgysomin,, p EW "W — Z aj[(wxj + b)yj = 1]
J

* Linearly separable case

* Lagrange Prime Function s.t.aj =2 0, for Vj
- L (1/1V, b, @) KKT Condition to Eliminate the Duality Gap
= EW "W — Z “j[(ij + b))’j —1] dL(w,b,a) _ 0 L(w,b,a) _ 0
J ow '  ab
* Lagrange Multiplier a; = 0,Vi
- (Xj = O,fOT V] a; ((Wx] als b)y] — 1) = O, Vi
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Dual Representation of SVM

1
L(w,b,a) = SWew — D aj[(wxj + b)yj = 1]
1
=-ww —XY;ay;wx; —bY; a5y + X a;
1
= 2N 2j 0 YiYXiXy — Xy Xj i YiYiXiXj — b X 0+ X

1
= Xj O — 5 N Xj i YV XiX;
Again, a quadratic programming

o 1
Once, @; is known MaXgaoMittyp 5w w = Y aj[(wx; +b)y; — 1]
w = Iiv—l al.yl.xl. s.t.aj = 0, for Vj !
a; ((WX] + b)y] — 1) =0
Now, we can find out the w and b again. b _ g, 2Lwha) _ g
Why is this better?

a; = 0,Vvi

Most of a; are..... i (wx; + b)y; 1) = 0,vi

Location of x is.... .
Let’s find out from the implementation... w= ) ayx; Z @y, =0

=
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Mapping Functions

Suppose that there are non-linearly separable data sets...
The non-linear separable case can be linearly separable when we increase the basis
space
Standard basis: e,, e,, e;...,e, =2 Linearly independent and generate R"
Expanding the Basis through Space mapping function ¢ : L - H
Or, transformation function, etc...
Any problem?7?7??
Feature space becomes bigger and bigger....

A
X2 x12
¢(x) = \/Exlxz
1,1) x5
(0,1) C( d
(1,0)
(0,0) a b
\ >
X1 d=(1,vV2,1)T
(a) Original space, L V2,2, (b) Mapping space, H
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Kernel Function

The kernel calculates the inner product of two vectors in a different space
(preferably without explicitly representing the two vectors in the different
space)

K(xi,x) = o(x) - o(x))

Some common kernels are following :
Polynomial(homogeneous)
k(xi, x;) = (x; - x)
Polynomial(inhomogeneous)
k(xi,xj) = (x; - xj + 1)
Gaussian kernel function, a.k.a. Radial Basis Function

2
(i, x;) = exp (—V”xi = x; )
For y > 0. Sometimes parameterized using y = ﬁ
Hyperbolic tangent, a.k.a. Sigmoid Function
k(x,-, x]-) = tanh(;cx,- - Xj + c)
For some(not every) k >0and c< 0
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Polynomial Kernel Function

Imagine we have
X=<X, X,> and z=<z,, z,>
Polynomial Kernel Function of degree 1
K(<x;, X,>,<2,, 2,>) = <Xy, X;> * <Z, Z,>=X,Z,#X,Z,=X * Z
Polynomial Kernel Function of degree 2
K(<x;, X,>,<2,, 2,>) = <X 2\2XX,%,2> - <z,2\22,2,2,%>
=X,22,% 42X X,2,2,+X,° 2, =(X,Z,;+X,Z,)*=(X - Z)?
Polynomial Kernel Function of degree 3
K (<xy, x,>, <2;, 2,2)=(x - 2)°
Polynomial Kernel Function of degree n

K(<x, x,>,<z,, 2,>)=(x - Z)"
Do we need to express and calculate the transformed coordinate values for x
and z to know the polynomial kernel of K?

Do we need to convert the feature spaces to exploit the linear separation in the
high order?

Condition: only the inner product is computable with this trick
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Dual SVM with Kernel Trick

1

maxyso2;a — ;ZiZ,- a0y, (e (x;)
1

MaxXyso X, a; — ;ZiZj a;0;y;y; K (x;, %;)

ai((wxj+b)yj—1) =0,C>a;>0

W = ?’:1 a;yip(x;)
b= Yj — Li= 1alyl(p(xl)(p(x])
—10;Y; =0

C=a; =0,Vi
Dual formulation lets SVM utilize
Kernel trick
Reduced parameters to estimate

Only store alpha values instead of w
How many alpha values are needed?
Consider meaningful alphas

1
maxg>o Z a; — Ez Z aiq;YiyjXiXj
j ioJ

C = a; > O,Vi
N
zaiyi =0
i=1
ai((wxj+b)yj—1) =0,C>a;>0
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* Linear case

. Classification with

. minw,b|lwl|

= SSVM Kernel Trick

* Transformed case
« sign(w-@(x) +b)
. minwlb,§j||w|| + CZ]- ¢
. (w<p(xj) + b)yj >1-¢;,Vj
: Ej = O,Vj
* Kernel trick case
« sign(w - @(x) + b)
1
° MaXgso 2] aj — Ezl Z] aiajyiyjK(xi, x])
©ow= YL ayiex)
© b=y; —we(xj) when0 < a; < C
: Zliv=1 ay; =0
0< a; < C; Vi

7 L ®

6 ]

N
sign(w - (x) + b) = sign Z a;y;ip(x;) - p(x) +y; — Z ;i (x;) p(x;)
=1 i=1
N N

= sign 2 a;yiK(x;,x) + yj — z a;y; K(x;, xj)
i=1 i=1
0< aj <C
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KAIST

SVM with Various Kernels

* SVM is very adaptable to the non-linearly separable cases with the

kernel trick

Easy expand to the high dimension features (for free!)

Polynomial Kernel with Degree 4 RBF Kernel with y=4
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Logistic Regression with Kernel

Logistic regression

P(YIX) = —m
Finding the MLE of 6
Can we kernelize the logistic regression?
w= YL ay;0(x)
P(Y|X) = 1 1 _ 1

l+e-0Tx LreZi ayio(x)e@+b | SN | ayK(xpx)+b
Problem changes

From finding 6 to finding «;

How to solve this problem?

In other words...
[s this a constrained optimization?

If not, what does it imply?
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