Support Vector Machine

Il-Chul Moon
Dept. of Industrial and Systems Engineering
KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- Learn the support vector machine classifier
 - Understand the maximum margin idea of the SVM
 - Understand the formulation of the optimization problem
- Learn the soft-margin and penalization
 - Know how to add the penalization term
 - Understand the difference between the log-loss and the hinge-loss
- Learn the kernel trick
 - Understand the primal problem and the dual problem of SVM
 - Know the types of kernels
 - Understand how to apply the kernel trick to SVM and logistic regression

KERNEL TRICK

Enough of Studying SVM?

- You can train the SVM when you even have "error" cases
 - Use a soft-margin to handle such errors
- However, this does not change the complexity of the decision boundary
- In the real world, there are situations which require complex decision boundary...
 - Option 1
 - Make decision boundary more complex
 - Go to non-linear
 - Option 2
 - Admit there will be an "error"
 - Represent the error in our problem formulation.

Feature Mapping to Expand Dim.

 $\begin{aligned} \min_{w,b,\xi_j} \big| |w| \big| + C \sum_j \xi_j \\ s.t. \\ \big(w \varphi(x_j) + b \big) y_j &\geq 1 - \xi_j, \forall j \\ \xi_j &\geq 0, \forall j \end{aligned}$

• $\varphi(\langle x_1, x_2 \rangle) =$ $\langle x_1, x_2, x_1^2, x_2^2, x_1 x_2, x_1^3, x_2^3, x_1^2 x_2, x_1 x_2^2 \rangle$

0 6.8566e-17
6.5
6 -6.58462:3205e-19
5.5
1.2 1.6 5.0355262271e-31
4.5
4.5
4.5
4.5
8.8004e-16 -7.4413e-31

Any problem???
of Params, Representation,
Computation....

Rethinking the Formulation

- SVM turns
 - Classification → Constrained quadratic programming
- Constrained optimization
 - $min_x f(x)$
 - $s.t. g(x) \le 0, h(x) = 0$

inf: infimum "Greatest Lower Bound"
inf{1,2,3} = 1

- Lagrange method
 - Lagrange Prime Function: $L(x, \alpha, \beta) = f(x) + \alpha g(x) + \beta h(x)$
 - Lagrange Multiplier: $\alpha \geq 0, \beta$
 - Lagrange Dual Function: $d(\alpha, \beta) = \inf_{x \in X} L(x, \alpha, \beta) = \min_{x} L(x, \alpha, \beta)$
 - $\max_{\alpha \ge 0, \beta} L(x, \alpha, \beta) = \begin{cases} f(x) : if \ x \ is \ feasible \\ \infty : otherwise \end{cases}$
 - $min_x f(x) \rightarrow min_x max_{\alpha \ge 0, \beta} L(x, \alpha, \beta)$
- Take advantage of the formulation technique of the constrained optimization
 - Primal and Dual Problems!

Primal and Dual Problem

Primal Problem

$$min_x f(x)$$
s. t. $g(x) \le 0, h(x) = 0$

Lagrange Dual Problem

$$max_{\alpha>0,\beta}d(\alpha,\beta)$$

s. t. $\alpha>0$

- Weak duality theorem
 - $d(\alpha, \beta) \le f(x^*)$ for $\forall \alpha, \forall \beta$
 - $d^* = max_{\alpha \ge 0, \beta} min_{\alpha} L(x, \alpha, \beta) \le min_{\alpha} max_{\alpha \ge 0, \beta} L(x, \alpha, \beta) = p^*$
 - Maximizing the dual function provides the lower bound of $f(x^*)$
 - Duality gap = $f(x^*) d(\alpha^*, \beta^*)$
- Strong duality
 - $d^* = max_{\alpha \ge 0,\beta} min_{\alpha} L(x,\alpha,\beta) = min_{\alpha} max_{\alpha \ge 0,\beta} L(x,\alpha,\beta) = p^*$
 - When Karush-Kunh-Tucker (KKT) Conditions are satisfied

KKT Condition and Strong Duality

- Strong duality
 - $d^* = max_{\alpha \ge 0,\beta} min_{\chi} L(x,\alpha,\beta) = min_{\chi} max_{\alpha \ge 0,\beta} L(x,\alpha,\beta) = p^*$
- Holds when KKT conditions are met

•
$$\nabla L(x^*, \alpha^*, \beta^*) = 0$$

- $\alpha^* \ge 0$
- $g(x^*) \leq 0$
- $h(x^*) = 0$
- $\alpha^* g(x^*) = 0$

Active Constraint $\alpha^* = 0 \Rightarrow g(x^*) = 0$ Inactive Constraint $g(x^*) < 0 \Rightarrow \alpha^* = 0$ \Rightarrow Complementary Slackness

Primal Problem

 $min_{x}f(x)$ s. t. $g(x) \le 0$, h(x) = 0

Strong Duality $d^* = p^*$

Always

KKT Condition

For convex optimization

Primal and dual problems are equivalent for the constrained convex optimization

Dual Problem of SVM

 $min_{x}f(x)$ s. t. $g(x) \le 0$, h(x) = 0

Lagrange Prime Function

 $L(x, \alpha, \beta) = f(x) + \alpha g(x) + \beta h(x)$

Primal Problem of Linearly Separable SVM

$$\begin{aligned} \min_{w,b} ||w|| \\ s.t. (wx_j + b)y_j &\geq 1, \forall j \\ \min_{w,b} \max_{\alpha \geq 0, \beta} \frac{1}{2} w \cdot w - \sum_{i} \alpha_j [(wx_j + b)y_j - 1] \end{aligned}$$

$$s.t.\alpha_i \geq 0, for \forall j$$

- Linearly separable case
- Lagrange Prime Function

•
$$L(w, b, \alpha)$$

= $\frac{1}{2}w \cdot w - \sum_{j} \alpha_{j}[(wx_{j} + b)y_{j} - 1]$

- Lagrange Multiplier
 - $\alpha_i \ge 0$, for $\forall j$

Dual Problem of Linearly Separable SVM

$$\max_{\alpha \ge 0} \min_{w,b} \frac{1}{2} w \cdot w - \sum_{j} \alpha_{j} [(wx_{j} + b)y_{j} - 1]$$

s. t. $\alpha_{i} \ge 0$, for $\forall j$

KKT Condition to Eliminate the Duality Gap

$$\frac{\partial L(w,b,\alpha)}{\partial w} = 0, \frac{\partial L(w,b,\alpha)}{\partial b} = 0$$

$$\alpha_i \ge 0, \forall i$$

$$\alpha_i \left((wx_j + b)y_j - 1 \right) = 0, \forall i$$

Dual Representation of SVM

•
$$L(w,b,\alpha) = \frac{1}{2}w \cdot w - \sum_{j} \alpha_{j} [(wx_{j}+b)y_{j}-1]$$

• =
$$\frac{1}{2}ww - \sum_{j} \alpha_{j}y_{j}wx_{j} - b\sum_{j} \alpha_{j}y_{j} + \sum_{j} \alpha_{j}$$

• =
$$\frac{1}{2}\sum_{i}\sum_{j}\alpha_{i}\alpha_{j}y_{i}y_{j}x_{i}x_{j} - \sum_{i}\sum_{j}\alpha_{i}\alpha_{j}y_{i}y_{j}x_{i}x_{j} - b \times 0 + \sum_{j}\alpha_{j}$$

• =
$$\sum_{j} \alpha_{j} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i} x_{j}$$

- Again, a quadratic programming
- Once, α_i is known

•
$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$

•
$$\alpha_i \left((wx_j + b)y_j - 1 \right) = 0$$

- Now, we can find out the w and b again.
 - Why is this better?
 - Most of α_i are.....
 - Location of *x* is....
- Let's find out from the implementation...

Dual Problem of Linearly Separable SVM

$$\max_{\alpha \ge 0} \min_{w,b} \frac{1}{2} w \cdot w - \sum_{j} \alpha_{j} [(wx_{j} + b)y_{j} - 1]$$

$$s.t. \alpha_{j} \ge 0, for \forall j$$

KKT Condition to Eliminate the Duality Gap

$$\frac{\partial L(w,b,\alpha)}{\partial w} = 0, \frac{\partial L(w,b,\alpha)}{\partial b} = 0$$

$$\alpha_i \ge 0, \forall i$$

$$\alpha_i \left((wx_j + b)y_j - 1 \right) = 0, \forall i$$

$$w = \sum_{i=1}^{N} \alpha_i y_i x_i$$

$$\sum_{i=1}^{N} \alpha_i y_i = 0$$

Mapping Functions

- Suppose that there are non-linearly separable data sets...
- The non-linear separable case can be linearly separable when we increase the basis space
 - Standard basis: e_1 , e_2 , e_3 ..., $e_n \rightarrow$ Linearly independent and generate R^n
- Expanding the Basis through Space mapping function $\phi: L \to H$
 - Or, transformation function, etc...
- Any problem????
 - Feature space becomes bigger and bigger....

Kernel Function

- The kernel calculates the inner product of two vectors in a different space (preferably without explicitly representing the two vectors in the different space)
 - $K(x_i, x_i) = \varphi(x_i) \cdot \varphi(x_i)$
- Some common kernels are following:
 - Polynomial(homogeneous)
 - $k(x_i, x_j) = (x_i \cdot x_j)^d$
 - Polynomial(inhomogeneous)
 - $k(x_i, x_j) = (x_i \cdot x_j + 1)^d$
 - Gaussian kernel function, a.k.a. Radial Basis Function
 - $k(x_i, x_j) = \exp(-\gamma ||x_i x_j||^2)$
 - For $\gamma > 0$. Sometimes parameterized using $\gamma = \frac{1}{2\sigma^2}$
 - Hyperbolic tangent, a.k.a. Sigmoid Function
 - $k(x_i, x_j) = \tanh(\kappa x_i \cdot x_j + c)$
 - For some(not every) $\kappa > 0$ and c < 0

Polynomial Kernel Function

- Imagine we have
 - $\mathbf{x} = \langle x_1, x_2 \rangle$ and $\mathbf{z} = \langle z_1, z_2 \rangle$
 - Polynomial Kernel Function of degree 1
 - $K(\langle x_1, x_2 \rangle, \langle z_1, z_2 \rangle) = \langle x_1, x_2 \rangle \cdot \langle z_1, z_2 \rangle = x_1 z_1 + x_2 z_2 = \mathbf{x} \cdot \mathbf{z}$
 - Polynomial Kernel Function of degree 2
 - $K(\langle x_1, x_2 \rangle, \langle z_1, z_2 \rangle) = \langle x_1^2, \sqrt{2}x_1x_2, x_2^2 \rangle \cdot \langle z_1^2, \sqrt{2}z_1z_2, z_2^2 \rangle$
 - $=x_1^2z_1^2 + 2x_1x_2z_1z_2 + x_2^2z_2^2 = (x_1z_1 + x_2z_2)^2 = (\mathbf{x} \cdot \mathbf{z})^2$
 - Polynomial Kernel Function of degree 3
 - $K(\langle x_1, x_2 \rangle, \langle z_1, z_2 \rangle) = (\mathbf{x} \cdot \mathbf{z})^3$
 - Polynomial Kernel Function of degree n
 - $K(\langle x_1, x_2 \rangle, \langle z_1, z_2 \rangle) = (\mathbf{x} \cdot \mathbf{z})^n$
- Do we need to express and calculate the transformed coordinate values for x and z to know the polynomial kernel of K?
 - Do we need to convert the feature spaces to exploit the linear separation in the high order?
 - Condition: only the inner product is computable with this trick

Dual SVM with Kernel Trick

•
$$\max_{\alpha \geq 0} \sum_{j} \alpha_{j} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} \varphi(x_{i}) \varphi(x_{j})$$

•
$$\max_{\alpha \geq 0} \sum_{j} \alpha_{j} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(x_{i}, x_{j})$$

•
$$\alpha_i \left((wx_j + b)y_j - 1 \right) = 0, C > \alpha_i > 0$$

•
$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \varphi(\mathbf{x}_i)$$

•
$$b = y_i - \sum_{i=1}^N \alpha_i y_i \varphi(x_i) \varphi(x_i)$$

•
$$\sum_{i=1}^{N} \alpha_i y_i = 0$$

- $C \ge \alpha_i \ge 0, \forall i$
- Dual formulation lets SVM utilize
 - Kernel trick
 - Reduced parameters to estimate
 - Only store alpha values instead of w
 - How many alpha values are needed?
 - Consider meaningful alphas

Dual Problem of Linearly Separable SVM

$$\max_{\alpha \ge 0} \sum_{j} \alpha_{j} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i} x_{j}$$

$$C \ge \alpha_{i} \ge 0, \forall i$$

$$\sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \left((wx_{j} + b) y_{j} - 1 \right) = 0, C > \alpha_{i} > 0$$

- Linear case
 - $sign(w \cdot x + b)$
 - $min_{w,b}||w||$
 - $(wx_i + b)y_j \ge 1, \forall j$
- Transformed case
 - $sign(w \cdot \varphi(x) + b)$
 - $min_{w,b,\xi_j}||w|| + C\sum_j \xi_j$
 - $(w\varphi(x_j) + b)y_j \ge 1 \xi_j, \forall j$
 - $\xi_j \ge 0, \forall j$
- Kernel trick case
 - $sign(w \cdot \varphi(x) + b)$
 - $\max_{\alpha \geq 0} \sum_{j} \alpha_{j} \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(x_{i}, x_{j})$
 - $\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \varphi(\mathbf{x}_i)$
 - $b = y_i w\varphi(x_i)$ when $0 < \alpha_i < C$
 - $\sum_{i=1}^{N} \alpha_i y_i = 0$
 - $0 \le \alpha_i \le C, \forall i$

Classification with SVM Kernel Trick

$$sign(w \cdot \varphi(x) + b) = sign\left(\sum_{i=1}^{N} \alpha_i y_i \varphi(x_i) \cdot \varphi(x) + y_j - \sum_{i=1}^{N} \alpha_i y_i \varphi(x_i) \varphi(x_j)\right)$$

$$= sign\left(\sum_{i=1}^{N} \alpha_i y_i K(x_i, x) + y_j - \sum_{i=1}^{N} \alpha_i y_i K(x_i, x_j)\right)$$

$$0 < \alpha_j < C$$

SVM with Various Kernels

- SVM is very adaptable to the non-linearly separable cases with the kernel trick
 - Easy expand to the high dimension features (for free!)

Logistic Regression with Kernel

- Logistic regression
 - $P(Y|X) = \frac{1}{1 + e^{-\dot{\theta}^T x}}$
 - Finding the MLE of θ
- Can we kernelize the logistic regression?

•
$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \varphi(\mathbf{x}_i)$$

•
$$P(Y|X) = \frac{1}{1 + e^{-\dot{\theta}^T x}} = \frac{1}{1 + e^{\sum_{i=1}^{N} \alpha_i y_i \varphi(x_i) \varphi(x) + b}} = \frac{1}{1 + e^{\sum_{i=1}^{N} \alpha_i y_i K(x_i, x) + b}}$$

- Problem changes
 - From finding θ to finding α_i
 - How to solve this problem?
 - In other words...
 - Is this a constrained optimization?
 - If not, what does it imply?