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Weekly Objectives

• Learn the support vector machine classifier

• Understand the maximum margin idea of the SVM

• Understand the formulation of the optimization problem

• Learn the soft-margin and penalization

• Know how to add the penalization term

• Understand the difference between the log-loss and the hinge-loss

• Learn the kernel trick

• Understand the primal problem and the dual problem of SVM

• Know the types of kernels

• Understand how to apply the kernel trick to SVM and logistic 
regression
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KERNEL TRICK
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Enough of Studying SVM?

• You can train the SVM when
you even have “error” cases
• Use a soft-margin to handle

such errors
• However, this does not 

change the complexity of 
the decision boundary

• In the real world, there are
situations which require 
complex decision boundary…
• Option 1

• Make decision boundary
more complex

• Go to non-linear

• Option 2
• Admit there will be an “error”
• Represent the error in our problem formulation.
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Feature Mapping 

to Expand Dim.
• 𝑚𝑖𝑛𝑤,𝑏,𝜉𝑗 𝑤 + 𝐶 σ𝑗 𝜉𝑗

𝑠. 𝑡.

𝑤𝜑(𝑥𝑗) + 𝑏 𝑦𝑗 ≥ 1 − 𝜉𝑗 , ∀𝑗

𝜉𝑗 ≥ 0, ∀𝑗

• 𝜑 < 𝑥1, 𝑥2 > =
< 𝑥1, 𝑥2, 𝑥1

2, 𝑥2
2, 𝑥1𝑥2, 𝑥1

3, 𝑥2
3, 𝑥1

2𝑥2, 𝑥1𝑥2
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Linearly Separable Dataset

Any problem???
# of Params, Representation, 

Computation….

Linear Decision Boundary on 
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Rethinking the Formulation

• SVM turns 
• Classification  Constrained quadratic programming

• Constrained optimization

• 𝑚𝑖𝑛𝑥𝑓 𝑥

• 𝑠. 𝑡. 𝑔 𝑥 ≤ 0, ℎ 𝑥 = 0
• Lagrange method

• Lagrange Prime Function: 𝐿 𝑥, 𝛼, 𝛽 = 𝑓 𝑥 + 𝛼𝑔 𝑥 + 𝛽ℎ 𝑥
• Lagrange Multiplier: 𝛼 ≥ 0, 𝛽
• Lagrange Dual Function: 𝑑 𝛼, 𝛽 = 𝑖𝑛𝑓𝑥∈𝑋𝐿 𝑥, 𝛼, 𝛽 = 𝑚𝑖𝑛𝑥𝐿 𝑥, 𝛼, 𝛽

• 𝑚𝑎𝑥𝛼≥0,𝛽𝐿 𝑥, 𝛼, 𝛽 = ቊ
𝑓 𝑥 : 𝑖𝑓 𝑥 𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
∞: 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• 𝑚𝑖𝑛𝑥𝑓 𝑥 → 𝑚𝑖𝑛𝑥𝑚𝑎𝑥𝛼≥0,𝛽𝐿 𝑥, 𝛼, 𝛽

• Take advantage of the formulation technique of the constrained 
optimization
• Primal and Dual Problems!

6

inf: infimum “Greatest Lower Bound”
inf{1,2,3} = 1
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Primal and Dual Problem

• Weak duality theorem

• 𝑑 𝛼, 𝛽 ≤ 𝑓 𝑥∗ 𝑓𝑜𝑟 ∀𝛼, ∀𝛽

• 𝑑∗ = 𝑚𝑎𝑥𝛼≥0,𝛽𝑚𝑖𝑛𝑥𝐿 𝑥, 𝛼, 𝛽 ≤ 𝑚𝑖𝑛𝑥𝑚𝑎𝑥𝛼≥0,𝛽𝐿 𝑥, 𝛼, 𝛽 = 𝑝∗

• Maximizing the dual function provides the lower bound of 𝑓 𝑥∗

• Duality gap = 𝑓 𝑥∗ − 𝑑 𝛼∗, 𝛽∗

• Strong duality

• 𝑑∗ = 𝑚𝑎𝑥𝛼≥0,𝛽𝑚𝑖𝑛𝑥𝐿 𝑥, 𝛼, 𝛽 = 𝑚𝑖𝑛𝑥𝑚𝑎𝑥𝛼≥0,𝛽𝐿 𝑥, 𝛼, 𝛽 = 𝑝∗

• When Karush-Kunh-Tucker (KKT) Conditions are satisfied

7

𝑚𝑖𝑛𝑥𝑓 𝑥
𝑠. 𝑡. 𝑔 𝑥 ≤ 0, ℎ 𝑥 = 0

𝑚𝑎𝑥𝛼>0,𝛽𝑑 𝛼, 𝛽

𝑠. 𝑡. 𝛼 > 0

Primal Problem Lagrange Dual Problem

𝑚𝑖𝑛𝑥𝑚𝑎𝑥𝛼≥0,𝛽𝐿 𝑥, 𝛼, 𝛽 𝑚𝑎𝑥𝛼≥0,𝛽𝑚𝑖𝑛𝑥𝐿 𝑥, 𝛼, 𝛽



Copyright ©  2010 by Il-Chul Moon, Dept. of Industrial and Systems Engineering, KAIST

KKT Condition and Strong Duality

• Strong duality

• 𝑑∗ = 𝑚𝑎𝑥𝛼≥0,𝛽𝑚𝑖𝑛𝑥𝐿 𝑥, 𝛼, 𝛽 = 𝑚𝑖𝑛𝑥𝑚𝑎𝑥𝛼≥0,𝛽𝐿 𝑥, 𝛼, 𝛽 = 𝑝∗

• Holds when KKT conditions are met

• 𝛻𝐿 𝑥∗, 𝛼∗, 𝛽∗ = 0

• 𝛼∗ ≥ 0

• 𝑔(𝑥∗) ≤ 0

• ℎ 𝑥∗ = 0

• 𝛼∗𝑔 𝑥∗ = 0

8

𝑚𝑖𝑛𝑥𝑓 𝑥
𝑠. 𝑡. 𝑔 𝑥 ≤ 0,
ℎ 𝑥 = 0

Primal Problem

Active Constraint
𝛼∗ = 0 ⇒ 𝑔 𝑥∗ = 0
Inactive Constraint
𝑔 𝑥∗ < 0 ⇒ 𝛼∗ = 0
 Complementary 

Slackness

Strong Duality
𝑑∗ = 𝑝∗

KKT Condition
Always

For convex optimization

Primal and dual problems are equivalent for 
the constrained convex optimization
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Dual Problem of SVM

• Linearly separable case

• Lagrange Prime Function

• 𝐿 𝑤, 𝑏, 𝛼

=
1

2
𝑤 ∙ 𝑤 −෍

𝑗

𝛼𝑗[ 𝑤𝑥𝑗 + 𝑏 𝑦𝑗 − 1]

• Lagrange Multiplier

• 𝛼𝑗 ≥ 0, 𝑓𝑜𝑟 ∀𝑗

9

𝑚𝑖𝑛𝑤,𝑏| 𝑤 |

𝑠. 𝑡. 𝑤𝑥𝑗 + 𝑏 𝑦𝑗 ≥ 1, ∀𝑗

𝐿 𝑥, 𝛼, 𝛽 = 𝑓 𝑥 + 𝛼𝑔 𝑥 + 𝛽ℎ 𝑥

𝑚𝑖𝑛𝑥𝑓 𝑥
𝑠. 𝑡. 𝑔 𝑥 ≤ 0,
ℎ 𝑥 = 0

Primal Problem

Lagrange Prime Function

Primal Problem of Linearly Separable SVM

𝑚𝑖𝑛𝑤,𝑏𝑚𝑎𝑥𝛼≥0,𝛽
1

2
𝑤 ∙ 𝑤 −෍

𝑗

𝛼𝑗 𝑤𝑥𝑗 + 𝑏 𝑦𝑗 − 1

𝑠. 𝑡. 𝛼𝑗 ≥ 0, 𝑓𝑜𝑟 ∀𝑗 Dual Problem of Linearly Separable SVM

𝑚𝑎𝑥𝛼≥0𝑚𝑖𝑛𝑤,𝑏
1

2
𝑤 ∙ 𝑤 −෍

𝑗

𝛼𝑗 𝑤𝑥𝑗 + 𝑏 𝑦𝑗 − 1

𝑠. 𝑡. 𝛼𝑗 ≥ 0, 𝑓𝑜𝑟 ∀𝑗

KKT Condition to Eliminate the Duality Gap

𝜕𝐿(𝒘,𝑏,𝜶)

𝜕𝒘
= 0 , 

𝜕𝐿(𝒘,𝑏,𝜶)

𝜕𝑏
= 0

𝛼𝑖 ≥ 0, ∀𝑖

𝛼𝑖 𝑤𝑥𝑗 + 𝑏 𝑦𝑗 − 1 = 0, ∀𝑖
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Dual Representation of SVM

• 𝐿 𝑤, 𝑏, 𝛼 =
1

2
𝑤 ∙ 𝑤 − σ𝑗 𝛼𝑗 𝑤𝑥𝑗 + 𝑏 𝑦𝑗 − 1

• =
1

2
𝑤𝑤 − σ𝑗 𝛼𝑗𝑦𝑗𝑤𝑥𝑗 − 𝑏σ𝑗 𝛼𝑗𝑦𝑗 + σ𝑗 𝛼𝑗

• =
1

2
σ𝑖σ𝑗 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗 − σ𝑖σ𝑗 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗 − 𝑏 × 0 + σ𝑗 𝛼𝑗

• = σ𝑗 𝛼𝑗 −
1

2
σ𝑖σ𝑗 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗

• Again, a quadratic programming

• Once, 𝛼𝑗 is known

• 𝒘 = σ𝑖=1
𝑁 𝛼𝑖𝑦𝑖𝒙𝑖

• 𝛼𝑖 𝑤𝑥𝑗 + 𝑏 𝑦𝑗 − 1 = 0

• Now, we can find out the w and b again.
• Why is this better?
• Most of 𝛼𝑗 are…..

• Location of x is….

• Let’s find out from the implementation…

10

𝑚𝑎𝑥𝛼≥0𝑚𝑖𝑛𝑤,𝑏
1

2
𝑤 ∙ 𝑤 −෍

𝑗

𝛼𝑗 𝑤𝑥𝑗 + 𝑏 𝑦𝑗 − 1

𝑠. 𝑡. 𝛼𝑗 ≥ 0, 𝑓𝑜𝑟 ∀𝑗

Dual Problem of Linearly Separable SVM

KKT Condition to Eliminate the Duality Gap

𝜕𝐿(𝒘,𝑏,𝜶)

𝜕𝒘
= 0 , 

𝜕𝐿(𝒘,𝑏,𝜶)

𝜕𝑏
= 0

𝛼𝑖 ≥ 0, ∀𝑖

𝛼𝑖 𝑤𝑥𝑗 + 𝑏 𝑦𝑗 − 1 = 0, ∀𝑖

𝒘 = ෍

𝑖=1

𝑁

𝛼𝑖𝑦𝑖𝒙𝑖 ෍

𝑖=1

𝑁

𝛼𝑖𝑦𝑖 = 0
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Mapping Functions
• Suppose that there are non-linearly separable data sets…
• The non-linear separable case can be linearly separable when we increase the basis 

space
• Standard basis: e1, e2, e3…,en Linearly independent and generate Rn

• Expanding the Basis through Space mapping function 𝜙 ∶ 𝐿 → 𝐻
• Or, transformation function, etc…

• Any problem????
• Feature space becomes bigger and bigger….

11

𝑥2

𝑥1

a

c

b

d

𝑥2
2

𝑥1
2

2𝑥1𝑥2

ෝ𝒂 = (0,0,0)𝑇

෡𝒃 = (1,0,0)𝑇

ො𝒄 = (0,0,1)𝑇

෡𝒅 = (1, 2, 1)𝑇

a Original space, L b Mapping space, H

𝜙 𝑥 =

𝑥1
2

2𝑥1𝑥2
𝑥2
2

(0,0)

(0,1)

(1,0)

(1,1)
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Kernel Function

• The kernel calculates the inner product of two vectors in a different space 
(preferably without explicitly representing the two vectors in the different 
space)

• 𝐾 𝒙𝒊, 𝒙𝒋 = 𝜑(𝒙𝒊) ∙ 𝜑(𝒙𝒋)

• Some common kernels are following :
• Polynomial(homogeneous)

• 𝑘 𝒙𝒊, 𝒙𝒋 = (𝒙𝒊 ∙ 𝒙𝒋)
𝑑

• Polynomial(inhomogeneous)
• 𝑘 𝒙𝒊, 𝒙𝒋 = (𝒙𝒊 ∙ 𝒙𝒋 + 1)𝑑

• Gaussian kernel function, a.k.a. Radial Basis Function

• 𝑘 𝒙𝒊, 𝒙𝒋 = exp −𝛾 𝒙𝒊 − 𝒙𝒋
2

• For 𝛾 > 0. Sometimes parameterized using 𝛾 =
1

2𝜎2

• Hyperbolic tangent, a.k.a. Sigmoid Function

• 𝑘 𝒙𝒊, 𝒙𝒋 = tanh 𝜅𝒙𝒊 ∙ 𝒙𝒋 + 𝑐

• For some(not every) 𝜅 > 0 and c < 0

12
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Polynomial Kernel Function

• Imagine we have

• x=<x1, x2> and z=<z1, z2>
• Polynomial Kernel Function of degree 1

• 𝐾 <x1, x2>,<z1, z2> = <x1, x2> ∙ <z1, z2>=x1z1+x2z2=x ∙ z

• Polynomial Kernel Function of degree 2

• 𝐾 <x1, x2>,<z1, z2> = <x1
2, 2x1x2,x2

2> ∙ <𝑧1
2, 2𝑧1z2,z2

2>

• =x1
2𝑧1

2+2x1x2𝑧1z2+x2
2z2

2=(x1z1+x2z2)2=(x ∙ z)2

• Polynomial Kernel Function of degree 3

• 𝐾 <x1, x2>,<z1, z2> =(x ∙ z)3

• Polynomial Kernel Function of degree n
• 𝐾 <x1, x2>,<z1, z2> =(x ∙ z)𝑛

• Do we need to express and calculate the transformed coordinate values for x
and z to know the polynomial kernel of K?
• Do we need to convert the feature spaces to exploit the linear separation in the 

high order?

• Condition: only the inner product is computable with this trick

13
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Dual SVM with Kernel Trick

• 𝑚𝑎𝑥𝛼≥0 σ𝑗 𝛼𝑗 −
1

2
σ
𝑖
σ
𝑗 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝜑 𝑥𝑖 𝜑 𝑥𝑗

• 𝑚𝑎𝑥𝛼≥0 σ𝑗 𝛼𝑗 −
1

2
σ
𝑖
σ
𝑗 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗)

• 𝛼𝑖 𝑤𝑥𝑗 + 𝑏 𝑦𝑗 − 1 = 0, 𝐶 > 𝛼𝑖 > 0

• 𝒘 = σ𝑖=1
𝑁 𝛼𝑖𝑦𝑖𝜑(𝒙𝑖)

• 𝑏 = 𝑦𝑗 − σ𝑖=1
𝑁 𝛼𝑖𝑦𝑖𝜑(𝒙𝑖)𝜑 𝑥𝑗

• σ𝑖=1
𝑁 𝛼𝑖𝑦𝑖 = 0

• 𝐶 ≥ 𝛼𝑖 ≥ 0, ∀𝑖
• Dual formulation lets SVM utilize

• Kernel trick
• Reduced parameters to estimate

• Only store alpha values instead of w
• How many alpha values are needed?
• Consider meaningful alphas

14

Dual Problem of Linearly Separable SVM

𝑚𝑎𝑥𝛼≥0෍

𝑗

𝛼𝑗 −
1

2
෍

𝑖

෍

𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗

𝐶 ≥ 𝛼𝑖 ≥ 0, ∀𝑖

෍

𝑖=1

𝑁

𝛼𝑖𝑦𝑖 = 0

𝛼𝑖 𝑤𝑥𝑗 + 𝑏 𝑦𝑗 − 1 = 0, 𝐶 > 𝛼𝑖 > 0
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Classification with 

SVM Kernel Trick

• Linear case

• 𝑠𝑖𝑔𝑛 𝑤 ∙ 𝑥 + 𝑏

• 𝑚𝑖𝑛𝑤,𝑏 𝑤

• 𝑤𝑥𝑗 + 𝑏 𝑦𝑗 ≥ 1, ∀𝑗

• Transformed case

• 𝑠𝑖𝑔𝑛(𝑤 ∙ 𝜑(𝑥) + 𝑏)

• 𝑚𝑖𝑛𝑤,𝑏,𝜉𝑗 𝑤 + 𝐶 σ𝑗 𝜉𝑗

• 𝑤𝜑(𝑥𝑗) + 𝑏 𝑦𝑗 ≥ 1 − 𝜉𝑗 , ∀𝑗

• 𝜉𝑗 ≥ 0, ∀𝑗

• Kernel trick case

• 𝑠𝑖𝑔𝑛(𝑤 ∙ 𝜑(𝑥) + 𝑏)

• 𝑚𝑎𝑥𝛼≥0σ𝑗 𝛼𝑗 −
1

2
σ𝑖σ𝑗 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾 𝑥𝑖 , 𝑥𝑗

• 𝒘 = σ𝑖=1
𝑁 𝛼𝑖𝑦𝑖𝜑(𝒙𝑖)

• 𝑏 = 𝑦𝑗 −𝑤𝜑 𝑥𝑗 𝑤ℎ𝑒𝑛0 < 𝛼𝑗 < 𝐶

• σ𝑖=1
𝑁 𝛼𝑖𝑦𝑖 = 0

• 0 ≤ 𝛼𝑖 ≤ 𝐶, ∀𝑖

15
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𝑁

𝛼𝑖𝑦𝑖𝐾(𝒙𝑖 , 𝑥𝑗)

0 < 𝛼𝑗 < 𝐶
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SVM with Various Kernels

• SVM is very adaptable to the non-linearly separable cases with the 
kernel trick

• Easy expand to the high dimension features (for free!)
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Logistic Regression with Kernel

• Logistic regression

• 𝑃 𝑌|𝑋 =
1

1+𝑒−
ሶ𝜃𝑇𝑥

• Finding the MLE of 𝜃

• Can we kernelize the logistic regression?

• 𝒘 = σ𝑖=1
𝑁 𝛼𝑖𝑦𝑖𝜑(𝒙𝑖)

• 𝑃 𝑌|𝑋 =
1

1+𝑒−
ሶ𝜃𝑇𝑥

=
1

1+𝑒
σ𝑖=1
𝑁 𝛼𝑖𝑦𝑖𝜑 𝒙𝑖 𝜑 𝑥 +𝑏

=
1

1+𝑒
σ𝑖=1
𝑁 𝛼𝑖𝑦𝑖𝐾(𝒙𝑖,𝑥)+𝑏

• Problem changes

• From finding 𝜃 to finding 𝛼𝑖
• How to solve this problem?

• In other words…

• Is this a constrained optimization?

• If not, what does it imply?
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