Training/Testing and Regularization

Il-Chul Moon
Dept. of Industrial and Systems Engineering
KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- Understand the concept of bias and variance
 - Know the concept of over-fitting and under-fitting
 - Able to segment two sources, bias and variance, of error
- Understand the bias and variance trade-off
 - Understand the concept of Occam's razor
 - Able to perform cross-validation
 - Know various performance metrics for supervised machine learning
- Understand the concept of regularization
 - Know how to apply regularization to
 - Linear regression
 - Logistic regression
 - Support vector machine

CONCEPT OF BIAS AND VARIANCE

Up To This Point...

- Now, you are supposed to have some knowledge in classifications
 - Naïve Bayes
 - Logistic Regression
 - Support Vector Machine
- SVM is still a commonly used machine learning algorithm for classifications
- Functioning is kind of done
- Efficiency and accuracy now becomes a problem

Better Machine Learning Approach?

- Accurate prediction result
 - Ex) with this NB classifier, I can filter spams with 95% accuracy!
- Is this a right claim?
 - The validity of accuracy
 - No clear definition
 - Why not use other performance metrics? Such as Precision/Recall, F-Measure
 - The validity of dataset
 - Spams??
 - How many spams?
 - Where did you gathered?
 - Big variance in the spams?
 - Is the spam mail evolving?
 - From Nigerian prince scheme to something else?

Training and Testing

Training

- Parameter inference procedure
- Prior knowledge, past experience
- There is no guarantee that this will work in the future
 - ML's Achilles gun is the stable/static distribution of learning targets.
- Why ML does not work in the future?
 - The domain changes, or the current domain does not show enough variance
 - The ML algorithms inherently have problems

Testing

- Testing the learned ML algorithms/the inferred parameters
- New dataset that is unrelated to the training process
- Imitating the future instances
 - By setting aside a subset of observations

Over-Fitting and Under-Fitting

- Imaging this scenario
 - You are given N points to train a ML algorithm
 - You are going to learn a simple polynomial regression function
 - Y=F(x)
 - The degree of F is undetermined. Can be linear or non-linear
- Considering the three Fs in the below, which looks better?

Tuning Model Complexity

- One degree, two degree, and N degree trained functions
 - As the degree increases, the model becomes complex
 - Is complex model better?
- Then, where do we stop in developing a complex model?
 - Is there any measure to calculate the complexity and the generality?
- There is a trade-off between the complexity of a model and the generality of a dataset.

Sources of Error in ML

- Source of error is in two-folds
 - Approximation and generalization
- $E_{out} \leq E_{in} + \Omega$
 - E_{out} is the estimation error, considering a regression case, of a trained ML algorithm
 - E_{in} is the error from approximation by the learning algorithms
 - Ω is the error caused by the variance of the observations
- Here, we define a few more symbols
 - f: the target function to learn
 - g: the learning function of ML
 - g^(D): the learned function by using a dataset, D, or an instance of hypothesis
 - D: an available dataset drawn from the real world
 - \bar{g} : the average hypothesis of a given infinite number of Ds
 - Formally, $\bar{g}(x) = E_D[g^{(D)}(x)]$

Bias and Variance

- $E_{out} \leq E_{in} + \Omega$
- Error of a single instance of a dataset D

•
$$E_{out}(g^{(D)}(x)) = E_X[(g^{(D)}(x) - f(x))^2]$$

Then, the expected error of the infinite number of datasets, D

•
$$E_D[E_{out}(g^{(D)}(x))] = E_D[E_X[(g^{(D)}(x) - f(x))^2]] = E_X[E_D[(g^{(D)}(x) - f(x))^2]]$$

• Let's simplify the inside term, $E_D[(g^{(D)}(x) - f(x))^2]$

•
$$E_D\left[\left(g^{(D)}(x) - f(x)\right)^2\right] = E_D\left[\left(g^{(D)}(x) - \bar{g}(x) + \bar{g}(x) - f(x)\right)^2\right]$$

• =
$$E_D \left[(g^{(D)}(x) - \bar{g}(x))^2 + (\bar{g}(x) - f(x))^2 + 2(g^{(D)}(x) - \bar{g}(x))(\bar{g}(x) - f(x)) \right]$$

• =
$$E_D[(g^{(D)}(x) - \bar{g}(x))^2] + (\bar{g}(x) - f(x))^2 + E_D[2(g^{(D)}(x) - \bar{g}(x))(\bar{g}(x) - f(x))]$$

- $E_D[2(g^{(D)}(x) \bar{g}(x))(\bar{g}(x) f(x))] = 0$
 - Because of the definition of $\bar{g}(x)$
- Then, eventually the error becomes

•
$$E_D[E_{out}(g^{(D)}(x))] = E_X[E_D[(g^{(D)}(x) - \bar{g}(x))^2] + (\bar{g}(x) - f(x))^2]$$

Bias and Variance Dilemma

•
$$E_D[E_{out}(g^{(D)}(x))] = E_X[E_D[(g^{(D)}(x) - \bar{g}(x))^2] + (\bar{g}(x) - f(x))^2]$$

- Let's define
 - Variance(x)= $E_D\left[\left(g^{(D)}(x)-\bar{g}(x)\right)^2\right]$
 - Bias²(X)= $(\bar{g}(x)-f(x))^2$
- Semantically, what do they mean?
 - Variance is an inability to train a model to the average hypothesis because of the dataset limitation
 - Bias is an inability to train an average hypothesis to match the real world
- How to reduce the bias and the variance?
 - Reducing the variance
 - Collecting more data
 - Reducing the bias
 - More complex model
- However, if we reduce the bias, we increase the variance, and vice versa
 - Bias and Variance Dilemma
 - We will see why this is in the next slide by empirical evaluations....