Training/Testing and Regularization

Il-Chul Moon
Dept. of Industrial and Systems Engineering
KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- Understand the concept of bias and variance
 - Know the concept of over-fitting and under-fitting
 - Able to segment two sources, bias and variance, of error
- Understand the bias and variance trade-off
 - Understand the concept of Occam's razor
 - Able to perform cross-validation
 - Know various performance metrics for supervised machine learning
- Understand the concept of regularization
 - Know how to apply regularization to
 - Linear regression
 - Logistic regression
 - Support vector machine

MODEL REGULARIZATION

Concept of Regularization

- Disaster in terms of variance
- With regularization
 - We sacrifice the perfect fit
 - Reducing the training accuracy
 - We increase the potential fit in the test
 - Because of the increased model complexity, the bias tends to decrease a little bit
 - Eventually, regularization is another constraint for models
 - Existing constraint?
 - Minimizing error from training set
- We add a new term to the MSE

Formal Definition of Regularization

- Regularization is another constraint for the regression
 - The below J(B) is the regularization function to minimize
 - B is the weight of the regression model except the constant term
- There are diverse regularization
 - L1 Regularization == Lasso regularization
 - The first order
 - L2 Regularization == Ridge regularization
 - The second order
 - Depends on the order of the regularization term
 - The order determines the shape of the loss function

$$E(w) = \frac{1}{2} \sum_{n=0}^{N} (train_n - g(x_n, w))^2 + \frac{\lambda}{2} ||w||^2$$

$$E(w) = \frac{1}{2} \sum_{n=0}^{N} (train_n - g(x_n, w))^2 + \lambda |w|$$

Regularization of Linear Regression

Let's apply the regularization idea to the linear regression

$$E(w) = \frac{1}{2} \sum_{n=0}^{N} (train_n - g(x_n, w))^2 + \frac{\lambda}{2} ||w||^2$$

• We can calculate w in the closed form.

$$\frac{d}{dw}E(w) = 0$$

$$\frac{d}{dw}E(w) = \frac{d}{dw}\left(\frac{1}{2}\|train - Xw\|^2 + \frac{\lambda}{2}\|w\|^2\right)$$

$$= \frac{d}{dw}\left(\frac{1}{2}\|train - Xw\|^T\|train - Xw\| + \frac{\lambda}{2}w^Tw\right)$$

$$= \frac{d}{dw}\left(\frac{1}{2}(train^Ttrain - 2X^Tw \cdot train + X^TXw^Tw) + \frac{\lambda}{2}w^Tw\right)$$

$$= \frac{d}{dw}\left(\frac{1}{2}train^Ttrain - X^Tw \cdot train + \frac{1}{2}X^TXw^Tw + \frac{\lambda}{2}w^Tw\right)$$

$$= -X^T \cdot train + X^TXw + \lambda w = 0$$

$$-X^{T} \cdot train + X^{T}Xw + \lambda Iw = 0$$

$$-X^{T} \cdot train + (X^{T}X + \lambda I)w = 0$$

$$(X^{T}X + \lambda I)w = X^{T} \cdot train$$

$$w = (X^{T}X + \lambda I)^{-1}X^{T} \cdot train$$

Effect of Regularization

- When $\lambda = 1$
 - The bias increases a little bit
 - The variance reduces significantly

8.0

Optimizing the Regularization

- We need to optimize λ
 - Too low λ : Too high variance
 - Works like an unregularized model
 - Too high λ : Too low variance
 - Works like a less complex model
 - Converting the first-order model into the constant model
- How to optimize λ ?

Regularization of Logistic Regression

- Regularization is applicable to other models
 - Such as logistic regression
- You can search for the closed form and the approximate form of finding $\boldsymbol{\theta}$

$$\operatorname{arg\,max}_{\theta} \sum_{i=1}^{m} \log p(y_i | x_i, \theta) - \alpha R(\theta)$$

L1:
$$R(\theta) = ||\theta||_1 = \sum_{i=1}^n |\theta_i|$$

L2:
$$R(\theta) = \|\theta\|_2^2 = \sum_{i=1}^n \theta_i^2$$

Regularization and SVM

$$f = \arg\min_{f \in \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} V(y_i, f(x_i)) + \lambda ||f||_{\mathcal{H}}^2 \right\}$$

$$V(y_{i}, f(x_{i})) = (1 - yf(x))_{+}$$

$$(s)_{+} = max(s, 0)$$

$$f = \arg\min_{f \in \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (1 - yf(x))_{+} + \lambda ||f||_{\mathcal{H}}^{2} \right\}$$

$$f = \arg\min_{f \in \mathcal{H}} \left\{ C \sum_{i=1}^{n} (1 - yf(x))_{+} + \frac{1}{2} ||f||_{\mathcal{H}}^{2} \right\}$$

$$C = \frac{1}{2\lambda n}$$

Support vector is a special case of regularization with the hinge loss