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Weekly Objectives

Understand the concept of bias and variance

Know the concept of over-fitting and under-fitting

Able to segment two sources, bias and variance, of error
Understand the bias and variance trade-off

Understand the concept of Occam’s razor

Able to perform cross-validation

Know various performance metrics for supervised machine learning

Understand the concept of regularization

Know how to apply regularization to
Linear regression
Logistic regression

Support vector machine
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MODEL REGULARIZATION
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Concept of Regularization

Disaster in terms of variance
With regularization

We sacrifice the perfect fit
Reducing the training accuracy

We increase the potential fit in the test .

Because of the increased model ar
complexity, the bias tends to
decrease a little bit

Eventually, regularization is another
constraint for models B
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Existing constraint?

Minimizing error from training set

We add a new term to the MSE
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Formal Definition of Regularization

Regularization is another constraint for the regression

The below J(B) is the regularization function to minimize

B is the weight of the regression model except the constant term
There are diverse regularization

L1 Regularization == Lasso regularization
The first order

L2 Regularization == Ridge regularization
The second order

Depends on the order of the regularization term
The order determines the shape of the loss function

1 C 2 2 A 2
B) = EZ(tmmn = gCin,W)? + 5 Wl
n=0

N
1
5 E(w) = EZ(trainn — g, w))? + Aw|
n=0

Copyright © 2010 by I1-Chul Moon, Dept. of Industrial and Systems Engineering, KAIST



Regularization of Linear Regression

Let’s apply the regularization idea to the linear regression
N

1 A
E(w) = EZ(trainn — g, w))? + 5 |lw||?

n=0

We can calculate w in the closed form.
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Effect of Regularization
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The bias increases a little bit

The variance reduces significantly
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Optimizing the Regularization
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We need to optimize A
Too low A : Too high variance
Works like an unregularized model
Too high A : Too low variance
Works like a less complex model

Converting the first-order model into the constant model

How to optimize A?
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Regularization of Logistic Regression

Regularization is applicable to other models
Such as logistic regression

You can search for the closed form and the approximate form of
finding 0

argmax, . log p(y;|x;,0)—«R(6)
=1

L1:  R(e)=|el,=>.l6,]
i=1

L2:  R(0)=|0|=>.6?
i=1
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Regularization and SVM
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Support vector is a special case of regularization with the hinge loss
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