ORF 523 LECTURE 9 Spring 2016, Princeton University

Instructor: A.A. Ahmadi
Scribe: G. Hall Thursday, March 10, 2016

When in doubt on the accuracy of these notes, please cross check with the instructor’s notes,
on|aaa. princeton. edu/ orf523. Any typos should be emailed to gh4@princeton.edu.

In this lecture, we see some of the most well-known classes of convex optimization problems

and some of their applications. These include:
e Linear Programming (LP)

(Convex) Quadratic Programming (QP)

(Convex) Quadratically Constrained Quadratic Programming (QCQP)

Second Order Cone Programming (SOCP)

Semidefinite Programming (SDP)

1 Linear Programming

Definition 1. A linear program (LP) is the problem of optimizing a linear function over a

polyhedron:
min ¢!z
stoalw<b;, i=1,...,m,
or written more compactly as
min ¢!z
s.t. Ax <b,

for some A € R™"™ b e R™.

We'll be very brief on our discussion of LPs since this is the central topic of ORF 522. It
suffices to say that LPs probably still take the top spot in terms of ubiquity of applications.

Here are a few examples:
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A variety of problems in production planning and scheduling

Exact formulation of several important combinatorial optimization problems

(e.g., min-cut, shortest path, bipartite matching)

Relaxations for all 0/1 combinatorial programs

Subroutines of branch-and-bound algorithms for integer programming

Relaxations for cardinality constrained (compressed sensing type) optimization prob-

lems

Computing Nash equilibria in zero-sum games

2 Quadratic Programming

Definition 2. A quadratic program (QP) is an optimization problem with a quadratic ob-

jective and linear constraints
min 2" Qx + ¢"x + ¢
xX
s.t. Ax <b.

Here, we have Q € S™", q e R", ce R, A€ R™" be R™

The difficulty of this problem changes drastically depending on whether () is positive semidef-
inite (psd) or not. When @ is psd, we call this convex quadratic programming, although
under some conventions quadratic programming refers to the convex case by definition (and
the nonconvex case would be called nonconvex QP).

In our previous lecture, we already saw a popular application of QP in mazimum-margin
support vector machines. Here we see another famous application in the field of finance,
which won its developer the Nobel Prize in economics. Let’s not forget that the basic least

sqaures problem is also another instance of QP, possibly the simplest one.

2.1 The Markowitz minimum variance portfolio

We would like to invest our money in n assets over a fixed period. The return r; of each asset

is a random variable; we only assume to know its first and second order moments. Denote



this random return by
IDi,end - IDi,beg

]Di,beg

where P, pe, and P .,q are the prices of the asset at the beginning and end of the period. Let

ry =

r € R™ be the random vector of all returns, which we assume has known mean p € R™ and
covariance ¥ € S™*". If we decide to invest a portion x; of our money in asset 7, then the

expected return of our portfolio would be
Elz"r] = 2" p,
and its variance

El(a"r — 2" p)?") = Bl (r — )] = Ela” (r — p)(r — )

=2 El(r — p)(r — p)a

=2T%.
In practice, u and ¥ can be estimated from past data and be replaced with their empirical
versions.
The minimum variance portfolio optimization problem seeks to find a portfolio that meets
a given desired level of return rp,;,, and has the lowest variance (or risk) possible:

min 2’ Lz

S.t. xT,u > Tmin

x>0, Zmizl.

In some variants of the problem the constraint x; > 0 is removed on some of the variables

(“shorting” is allowed). In either case, this problem is a convex QP (why?).

3 Quadratically Constrained Quadratic Programming

Definition 3. A quadratically constrained quadratic program (QCQP) is an optimization

problem with a quadratic objective and quadratic constraints:
minz’ Qx4+ ¢z + ¢
x
st 2T Qur+q¢lr4+c¢,<0,i=1,...,m.

Here, we have Q;,Q € S™", q,q; € R", ¢,¢; € R".



Just like QP, the difficulty of the problem changes drastically depending on whether the
matrices (; and () are psd or not. In the case where @), Q1, ..., Q,, are all psd, we refer to
this problem as convex QCQP.

Notice that QP C QCQP (take Q; = 0).

A variant of the Markowitz portfolio problem described above gives a simple example of a

QCQP.

3.1 A variant of the Markowitz portfolio theory problem

Once again, we would like to invest our money in n assets over a fixed period, with » € R”
denoting the random vector of all returns, with mean g € R™ and covariance matrix ¥ €
S™*™_ In our previous example, we wanted to find the minimum risk (or minimum variance)
portfolio at a given level of return r.;,. It can also be interesting to consider the problem of

finding the maximum return portfolio that meets a given level of risk o.x:

max x’ 1
T

This is a convex QCQP.

4 Second Order Cone Programming

Definition 4. A second order cone program (SOCP) is an optimization problem of the form:
mxin ffa (1)
Az + bl < cfo+d;, i=1,...,m,

where A; € RF¥" b, € R¥ ¢, € R® and d; € R.

The terminology of “SOCP” comes from its connection to the second order cone (also called

the Lorentz cone or the ice-cream cone).



Definition 5 (Second order cone). The second order cone in dimension n + 1 is the set

L ={(z, )] =l < t}.

Figure 1: Boundary of the second order cone in R3.
Image credit: [I]

Notice then that is equivalent to
H;in ffa
(Ajx + by, cla+d) € L7 i=1,...,m.
o If we take A; = 0, we recover LPs.

e We also have (convex) QCQP C SOCP (can you prove this?).

4.1 LASSO with Block Sparsity [2]

As an application of SOCP, we study a variant of the LASSO problem we saw earlier on.
Consider the problem

min||Aa — yb,

T
where o = (a1 ap> eR", a; e R™, and ) . n;, =n.

e Similar to LASSO, we would like to obtain sparse solutions. However, in this new

problem, we want to take into consideration the location of the zeros. To be more

5



precise, we would like to set as many blocks a; to zero as we can. If there is one
or more nonzero element in a given block, then it does not matter to us how many

elements in that block are nonzero.

e Naturally, the ||.||; penalty of LASSO will not do the right thing here as it attempts
to return a sparse solution without taking into consideration the block structure of our

problem.

e Instead, we propose the penalty function

||041||2 p
Z [[evs] |2
i=1

H%m

This will set many of the terms |||l to zero, which will force all elements of that

particular block to be set to zero.

e The overall problem then becomes

p
min | Aa — yll +7 ) |laillz

=1

where v > ( is a given constant.

e The problem can be rewritten in SOCP form:

p
CIXHZI? z+7 Z t;

=1
|Aa =yl < 2

||Oéi|’2 S ti, 1= 1, .o, P
Let us mention a regression scenario where block sparsity can be relevant.

Example: Consider a standard regression scenario where you have m data points in R™ and
want to fit a function f to this data to minimize the sum of the squares of deviations. You
conjecture that f belongs to one of three subclasses of functions: polynomials, exponentials,

and trigonometric functions. For example, f is of the form

f(z) = Brat. . P52+ Bse"+. . A Proe’ +B11 cos(z)+Biasin(y)+. . .+ B cos(5x)+Bay sin(5x).



The problem of finding which subclass of functions is most important to the regression is a
LASSO problem with block sparsity. Our blocks in this case would be ay = [B, ..., (57,

Qg = [567 cee 7610]T and ag = [5117 e 7621]T-

5 Semidefinite programming (SDP)

Semidefinite programming is the broadest class of convex optimization problems we consider

in this class. As such, we will study this problem class in much more depth.

5.1 Definition and basic properties

5.1.1 Definition

Definition 6. A semidefinite program is an optimization problem of the form

min Tr(CX)
XGS"’/X'"/

s.t. Tr(A;X)=0b,i=1,...,m,

X =0,
where the input data is C € S™" A, € S i=1,...,m,b; e R,i=1,...,m.
Notation:

e S™" denotes the set of n x n real symmetric matrices.

e Tr denotes the trace of a matrix; i.e., the sum of its diagonal elements (which also

equals the sum of its eigenvalues).

A semidefinite program is an optimization problem over the space of symmetric matrices. It

has two types of constraints:
e Affine constraints in the entries of the decision matrix X.
e A constraint forcing some matrix to be positive semidefinite.

The trace notation is used as a convenient way of expressing affine constraints in the entries

of our unknown matrix. If A and X are symmetric, we have

'7j



Since X is symmetric, we can assume without loss of generality that A is symmetric as we
have Tr(AX) = Tr((#)X ) (why?). In some other texts, this assumption is not made and
instead you would see the expression Tr(A”T X), which is the standard inner product between
two matrices A and X.

We should also comment that the SDP presented above is appearing in the so-called standard
form. Many SDPs that we encounter in practice do not appear in this form. What defines
an SDP is really a constraints that requires a matrix to be positive semidefinite, with the
entries of this matrix being affine expressions of decision variables.

Another common form of a semidefinite constraint is the following:
A0+.’171A1+...,+£L'n14n t 0.

This is called a linear matriz inequality (LMI). The decision variables here are the scalars
x1,...,%, and the symmetric matrices Ay,..., A, are given as input. Can you write this

constraint in standard form?

5.1.2 Why SDP?

The reasons will become more clear throughout this and future lectures, but here is a sum-

mary:

e SDP is a very natural generalization of LP, but the expressive power of SDPs is much
richer than LPs.

e While broader than LP, SDP is still a convex optimization problem (in the geometric

sense).

e We can solve SDPs efficiently (in polynomial time to arbitrary accuracy). This is
typically done by interior point methods, although other types of algorithms are also

available.

e When faced with a nonconvex optimization problem, SDPs typically produce much

stronger bounds/relaxations than LPs do.

e Just like LP, SDP has a beautiful and well-established theory. Much of it mirrors the
theory of LP.



5.1.3 Characterizations of positive semidefinite matrices (reminder)

When dealing with SDPs, it is useful to recall the different characterizations of psd matrices:
X0

sy’ Xy >0, Vy e R”

& All eigenvalues of X are > 0

& Sylvester’s critierion holds: all 2" — 1 principal minors of X are nonnegative (see Lecture 2)

& X = MMT, for some n x k matrix M. This is called a Cholesky factorization.

Remark: A = B means A — B = 0.

Proof of the Cholesky factorization:

(=) Since X is symmetric, there exists an orthogonal matrix U such that

X =U"DU,
where
D =diag(A, ..., ),
and \;,2 =1,...,n, are the eigenvalues of X. Since eigenvalues of a psd matrix are nonneg-

ative, we can define
VD = diag(\/ A1y - -,/ An)

and take
M =U"/DU.

(<) This follows by noticing that 7 Xz = 2’ MM*x = ||MTz|]2 > 0. O

5.1.4 A toy SDP example and the CVX syntax
Consider the SDP

minz +y (2)

s.t. =0
Iy

r+y <3

You would code this in CVX as follows:



cvx_begin

variables x y

minimize (x+y)

[x 1;1 y]==semidefinite (2);
Xty <=3;

cvx_end

Exercise: Write this SDP in standard form.

Note: All SDPs can be written in standard form but this transformation is often not needed

from the user (most solvers do it automatically if they need to work with the standard form).
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Figure 2: The feasible set of the SDP in 1)

5.1.5 Feasible set of SDPs

The feasible set of an SDP is called a spectrahedron. Every polyhedron is a spectrahedron
(this is because every LP can be written as an SDP as we’ll show shortly), but spectrahedra
are far richer geometric objects than polyhedra (this is the reason why SDP is in general more
powerful than LP). Examples of spectrahedra that are not polyhedra are given in Figure
and Figure [3]
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Figure 3: The so-called “elliptope.”

Spectrahedra are always convex sets:
e Positive semidefinite n x n matrices form a convex set (why?).
e Affine constraints define a convex set.
e Intersection of convex sets is convex.

When we say an SDP is a convex optimization problem, we mean this is in the geometric

sense:
e The objective is an affine function of the entries of the matrix.
e The feasible set is a convex set.

e However, the feasible set is not written in the explicit functional form

“convex functions < 0, affine function = 0”.
To get a functional form, one can write an SDP as an infinite LP:
e Replace X = 0 with linear constraints y! Xy; > 0, for all y € R™.
e We can reduce this to be a countable infinity by only taking y € Z™ (why?).

Alternatively, we can write an SDP as a nonlinear program by replacing X > 0 with 2" — 1
minor inequalities coming from Sylvester’s critierion. However, treating the matrix constraint
X = 0 directly is often the right thing to do.
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5.1.6 Attainment of optimal solutions

Unlike LPs, the minimum of an SDP may not always be attained. Here is a simple example:

min s (3)

I 1
S.t. >~ 0.
1 )

/

X1

Figure 4: The feasible set of the SDP in 1’

5.2 Special cases of SDP: LP and SOCP
5.2.1 LP as a special case of SDP

Consider an LP

min ¢’z

zER”
T, 3
st.a;z="b,1=1,...,m,

x> 0.

For a vector v, let diag(v) denote the diagonal matrix with v on its diagonal. Then, we can
write our LP as the following SDP (why?):

rr}}n Tr(diag(c)X)

s.t. Tr(diag(a;))X) =0b;, i =1,...,m,
X >=0.

e So LP isreally a special case of SDP where all matrices are diagonal — positive semidef-

initeness for a diagonal matrix simply means nonnegativity of its diagonal elements.
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e Like we mentioned already, geometry of SDP is far more complex than LP.

e For example, unlike polyhedra, spectahedra may have an infinite number of extreme

pointﬂ. An example is the elliptope in Figure . Here’s another simple example:

{ Ou) | gt

={ (9 | {l’;‘ \i)}/o'j-

=10 =05 00 0.5 1.0

X

Figure 5: An example of a spectrahedron with an infinite number of extreme points

e This is the fundamental reason why SDP is not naturally amenable to “simplex type”

algorithms.

e On the contrary, interior points for LP very naturally extend to SDP.

5.2.2 SOCP as a special case of SDP

To prove that SOCP is a special case of SDP, we first prove the following lemma that

introduces the very useful notion of Schur complements.

A B .
BT ol with

det(A) # 0, the matriz S := C — BT A™1B s called the Schur complement of A in X.

Definition 7 (Schur complement). Given a symmetric block matriz X =

A B
Lemma 1. Consider a block matriz X = (BT C> and let S :==C — BTA™'B. If A ~ 0,
then
X0« 85*=0.

Proof: Let f7 := min, f(u,v), where f(u,v) = u’ Au + 20T BTu + vTCv. Suppose A = 0,

which implies that f is strictly convex in u. We can find the unique global solution of f over

'Recall that a point z is an extreme point of a convex set P if it cannot be written as a strict convex
combination of two other points in P; i.e., fly, 2 € P such that 2 = Ay + (1 — \)z, for some A € (0, 1).
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u as follows:

g =2Au+2Bv=0=u=—A"'Bu.
u

Hence, we obtain
fr=v"B"A'Bv — 20" BT A ' By + v"Cv
=v"(C - BTA'B)
= o Sw.

(=) If S # 0, then
Jvs.t. vISv < 0= fr<0.

(—A—le>
Z = y
v

Picking

we obtain 27 Xz < 0.

(<) Take any (u) . Then
v

T
(u) X (u) > fr= vI'Sv > 0.
v v

Now let us use Schur complemets to show that SOCP is a special case of SDP.

OJ

Recall the general form of an SOCP:
min f7x

We can assume ¢/ x + d; > 0 (if not, one can argue separately and easily (why?)). Now we
can write the constraint

as

= 0. (4)

((c{x +d) A+ bi>

14



Indeed, using Lemma 1,

1
(el +di) = (A + b)" o=

< C?xi +b; > || Az + b2

as both terms are positive. []

5.3 Duality for SDP

Every SDP has a dual, which itself is an SDP. The primal and dual SDPs bound the optimal

values of one another.

5.3.1 Deriving the dual of an SDP

Consider the primal SDP:

min Tr(CX)

Xegnxn
st. Tr(A;X)=0b,i=1,...,m,
X >0,

and denote its optimal value by p*. To derive the dual, we define the Lagrangian function

LX) = Tr(CX) + ) Ai(b; — Tr(AiX)) — Tr(Xp),

and the dual function
DA, p) = min L(X, A, ).

The dual problem is then given by
max D(A, i) (5)
A
s.t. > 0.
Let us explain why the dual problem is defined this way.
Lemma 2. For any A, i = 0 we have

D(A, 1) <p".
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Proof: We first prove a basic linear algebra fact, namely, if A = 0 and B > 0 then Tr(AB) >

0. Indeed, as A = 0 and B = 0, 3M, N such that A = MM? and B = NN using the
Cholesky decomposition. Then

Tr(AB) = T((MM"NNT) = Te(N"MM"N) = ||[M"N||% > 0.

Now, let X* be a primal optimal solutionﬂ Then in view of the fact that b; — Tr(A; X*) = 0,
and X*, u > 0, we have

LX) = Tr(OX) = Te(X*p) = p* — Te(X*p) < ',
where the last inequality follows from the claim we just proved above. Hence, we see that
DA, p) = min L(X, A, p) < p*. O

So the motivation behind the dual problem is to find the largest lower bound on p*. Let

us now write out the dual problem. Notice that

—00 otherwise

D\ p) = m)}n L(X, A\ p) =

(why?). In view of the fact that p > 0, the condition C'— )", A\;A; — = 0 can be rewritten
as C' = > . \jA;. Hence, we can write out the dual SDP as follows:

max b'\
AER™

i=1

It is interesting to contrast this with the primal/dual LP pair in standard form:

(P) min 'z

Ax =0

x>0,

(D) max bly

ATy <e.

2We saw already that an SDP may not always achieve its optimal solution. We leave it to the reader to

“fix” this proof for the case where the optimal solution is not achieved (hint: introduce an “€”).
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5.3.2 Weak duality

Theorem 1 (Weak duality). Let X feasible be any feasible solution to the primal SDP (P)
and let X be any feasible solution to the dual SDP (D), then, we have

Tr(CX) > bl

The proof was already done in Lemma 2.

5.3.3 Strong duality
Recall the strong duality theorem for LPs:

Theorem 2 (Strong duality for LP - reminder). Consider the primal-dual LP pair (P) and
(D) given above. If (P) has a finite optimal value, then so does (D) and the two values

match.
Interestingly, this theorem does not hold for SDPs:

e [t can happen that the primal optimal solution is achieved but the dual optimal solution

is not (can you think of an example?).

e [t can also happen that the primal and the dual both achieve their optima but the

duality gap is nonzero (i.e., d* < p*) (can you think of an example?).

Fortunately, under mild additional assumptions, we can still achieve a strong duality result

for semidefinite programming. One version of this theorem is stated below.

Theorem 3. If the primal and dual SDPs are both strictly feasible (i.e., if there exists a
solution that makes the matriz which needs to be positive semidefinite, positive definite),
then both problems achieve their optimal value and Tr(CX*) = bTX* (i.e., the optimal values
match).

6 Conclusion
In this lecture, we saw a hierarchy of convex optimization problems:
LP C (convex) QP C (convex) QCQP C SOCP C SDP.

In the upcoming lectures, we will dig deeper into SDP duality theory, as well as some
applications of SDP. We will also cover the more general framework of conic programming

(CP) which encompasses all problems classes studied in this lecture.
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Notes

Further reading for this lecture can include Chapter 4 of [I] and Chapter 2 of [3].
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